Programmer’s Guide &
Language Reference

Version 13.2

The tool of thought for expert programming

Dyalog is a trademark of Dyalog Limited

Copyright © 1982-2013 by Dyalog Limited

All rights reserved.

Version: 13.2

Revision: 22186

No part of this publication may be reproduced in any form by any means without the prior written per-

mission of Dyalog Limited.

Dyalog Limited makes no representations or warranties with respect to the contents hereof and spe-
cifically disclaims any implied warranties of merchantability or fitness for any particular purpose. Dya-

log Limited reserves the right to revise this publication without notification.

TRADEMARKS:

SQAPL is copyright of Insight Systems ApS.

UNIX is a registered trademark of The Open Group.

Windows, Windows Vista, Visual Basic and Excel are trademarks of Microsoft Corporation.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.

Array Editor is copyright of davidliebtag.com

All other trademarks and copyrights are acknowledged.

Contents

Chapter1:Introduction . . 1
W OTK S PaAC S - - 1
NaAMESPACES oot 2
YN) 4
Legal Names ...l 8
Specification of Variables 8
Vector NOtation oo 9
Structuring of ATTaYS 10
Display of ArTays - ... 11
Prototypes and Fill Ttems 15
EXPIeSSIOMNS | . 17
FUNCtiONS .. 18
L0 00 10 ¢ 21
Complex NUMDETS 23
128 Bit Decimal Floating-Point Support il 27
Namespace SyNtax 32
TRrCads ... 46
External Variables L 60
Component Files ... il 61
AUXIliary ProCesSOrS 61
Migration Level 61
Key to Notation 62
Chapter 2: Defined Functions & Operators 63
Canonical Representation 63
Model Syntax ..l 64
St e S _ .. 65
Global & Local Names 66
NAMELISES ... oot 68
Function Declaration Statements 69

Access Statement ... 70

Attribute Statement ... 71

Implements Statement iiiiiiiiiiiiiil. 71

Signature Statementl 72

Control STIUCTUIES . - - o oo e e e e e e e e e e e e 74

While Statement . 81
Repeat Statement ... iil.. 83
For Statement . 85
Select Statement _ 87
Wiath StatemMeNt | 89
Hold Statement 90
Trap Statement .. il 94
GOTO StatemMeNt . .. 97
Reeturn Statement . . 97
Leave Statement 97
Continue StatemMeNt 98
Section Statementl 98
T g TS 99
Idiom Recognition 102
Search Functions and Hash Tables _ 109
Locked Functions & Operators oo 110
The State IndiCator ... 111
Dynamic Functions & Operators 113
APL Line EditOr ... 129
Chapter 3: Object Oriented Programing 139
Introducing Classes 139
CONSITUCLOTS . . e e e e e e 144
DS U O S . 157
Class MEMDETS . ..o e e e 160
FielaS oL 161
M ethOdS .. 166
PrOP e tieS L. 170
IO A S 183
Including Namespaces in Classes 186
Nested CLaSSES e e e e e e 188
NameSPaCe SCTIPES .« . 197
Class Declaration Statements _ 202
TField Statement . 208
Prop eIty SeCtion 210
PropertyGet Function 212
PropertySet Function 213
PropertyShape Function 214
Chapter4: Primitive Functions _ 215
Scalar FUNCUIONS . e e e 215

Mixed FUNCHIONS .o e e e e e e e e e e 218

Conformability ... 221
Fill Bl ements « oo 221
AXIS OPCTAtOT | 222
FUNCHONS (A-Z) < 222
A DOTt 223
Add: L 224
And, Lowest Common Multiple: 225
ASSTNMCN: L 226
Assignment (Indexed):l 229
Assignment (SeleCtiVe): L 234
Binomual: 236
BranCh: 237
Catenate/Laminate: 239
Catenate First: 241
Gl g, 241
G AT 242
GO U AL, L 243
Deal: 243
DeCOde: 244
Dt L 246
Direction (SIgnUmM): | L 247
DaSCIOSC: o 248
DIVIAE: 249
DD (0o Y 250
Drop With A XS .. 251
ENClOSe: L 252
Enclose With AXeS: ... 253
BNCOde: 254
B LaSt: 256
Equals 257
EXCIUAding: 258
Execute (Monadic): L 259
Execute (Dyadic): ... 259
EXpand: 260
Expand First: | 261
Exponential: . 261
Factorial: 261
FInd: 262
FarS . 263
FloOr: 263
Format (Monadic): 264
Format (Dyadic): ... L 268
Grade Down (MonadiC):o 270
Grade Down (Dyadic): . 271

Grade Up (Monadic):o e 273

Grade Up (Dyadic): ... 275

(€5 (< 11 S 276
Greater Or Equal: ... 277
LAentitY . 277
DX . . 278
IndeX With AXES: o 281
Index Generator: ... 282
Index Of: 283
INdeXiN g L 284
I erSE et O, 288
7 289
| B 290
Less Or Equal: oo 290
Logarithm: 291
Mg nitUd . . L 291
Y 1)« S 292
MaatriX DavIde: . 293
Mt X IV TS C: . il 295
MaAXIIMUIG o e e e e e e e 296
MM TS D 296
MINIMUING e e e e e e 296
VU, e 296
LY 5 S 297
MU LY. L 298
NaANA: L 298
Natural Logarithm: . 298
N At VO, 299
N O, e 299
N Ot L 299
Not Equals . 300
NoOt MatCh: . 300
Or, Greatest Common DivVISOT: ... e e e 301
Pt 0N, 302
Partitioned Enclose: 304
1 TS L 305
PICK . 305
PIUS: 306
POW T 306
RVl . 307
Ravel With AXeS: 307
ReCIproCal: L 310
R iCate: 310
ReSNaD e, 312
ReSIAUG: 312

ROV OIS, o 313

Reverse Farst: |l 313
RUGNt: L 313
ROIL: 314
ROt 314
Rootate Farst: 315
SN, 316
S 316
] 0] L 317
U A, L 317
7o) (S 318
A . 319
Take With A XCS: e e e e 320
IS, - e e e e 321
Transpose (Monadic): L 321
Transpose (Dyadic): .. 321
YD il 322
U IOM, 323
U iU, 323
Wt OUt . 323
41 U 1S 323
Chapter 5: Primitive Operators o 325
Operator SYNTaX 325
AXIS Specification ... 326
OPeratOrS (A2 - 327
Assignment (Modified): 327
Assignment (Indexed Modified): 328
Assignment (Selective Modified): 329
Axis (with Monadic Operand): 329
Axis (with Dyadic Operand): 330
COMIMUL: . e e e e e e e 333
Composition (Form 1) .. 334
Composition (Form I1): ... 335
Composition (Form II1): ... 336
Composition (Form IV) . 336
Each (with Monadic Operand): il 337
Each (with Dyadic Operand): 338
Inner ProdUct: . 339
Outer ProdUct: e 340
PoWer Operator: . il 341
ReAUCE: L 343
Reeduce First: 346
Reduce N-WiSe: e e 346

Yo s 347

SCan FarSt: 348

D AW I il 349
NV aTIANt: L 350
LB eam: il 353
Syntax ColoUTNg: 354
Core to APLCore: (UNIX only) 355
Number of Threads: 356
Parallel Execution Threshold: e 356
Memory Manager StatiStics: L 357
Update DataTable: L 360
Read DataTable: . 363
Export To Memory: ... 366
Component Checksum Validation: 366
Fork New Task: (UNIX only) ... e 367
Change User: (UNIX only) .o 368
Reap Forked Tasks: (UNIX only) ... e 369
Signal Counts: (UNIX only) 371
Thread Synchronisation Mechanism: 371
Random Number Generator: L 372
Chapter 6: System Functions & Variables 373
System Variables 375
System NamMESPACESt e 376
System CONStants 377
System FUnCtionsl 378
Character Input/OutpUt: .. 386
Evaluated Input/Output: .. 388
Underscored Alphabetic Characters:l 390
Alphabetic Characters: il 390
Account Information: 391
Account Name: il 391
Arbitrary OUtPUt: L 392
AT DU S, il 393
ALOMIC V OO : il 397
Atomic Vector - Unicode: ... il 397
Base Class: ... 400
ClaSS: il 401
Clear WorKSpace: ... 403
Execute Windows Command: _ iiiil. 404
Start Windows Auxiliary Processor: 407
Canonical Representation: il 408
Change Space:o 410
Comparison Tolerance: i 412

Copy WoorksSpace: 413

DA gt L 415
Decimal Comparison Tolerance: il 415
Display Form: oL 416
Division Method: 419
D elaY: 419
Diagnostic Message: 420
Extended Diagnostic Message: 421
Dequeue Events: il 426
Data Representation (Monadic): 429
Data Representation (Dyadic): 430
Edit OB eCt: 431
Event Message: 431
EX P IO 432
Expunge Object: ... 433
EXpOrt ObjeCt: il 435
File Append Component: ... L 436
File System Available: ... L 436
File Check and Repair: 437
FIle GOy oo 438
File Create: oL 440
File Drop Component: 442
File Brase: 443
File HiStOry: oL 443
File Hold: 445
Fix SOt L 446
Component File Library: . 447
Format (Monadic): 448
Format (Dyadic): ... L 449
File NamesS: .. 456
File NUmMbCTS: | 457
File Properties: . 458
Floating-Point Representation: 461
File Read AcCCess: 463
File Read Component Information: 464
File Read Component: 465
File Rename: . 466
File Replace Component: ... L 467
File ReSIZ: L 468
File Siz€: 469
File Set ACCeSS: . . 469
File Share Tie: ... L 470
Exclusive File Tie: ..o 471
File Untie: L 472
Fix Definition: 472

IS IS, o o 473

10

Index Origin: ... 474
Koy Label: 475
Line CoUNt: 475
Load Workspace: o 476
Lok Definition: 477
Latent EXpression: 478
Map File: L 478
Migration Level: L 480
Set MONItOT: o o e e 482
Query MONItOT: . 483
Name ASSOCIAtION: 484
Native File Append: 512
Name Classification: 513
Native File Create: 524
Native File Erase: ..o 524
N oW IS AN C e, . 525
NaAME LSt 526
Native File LoCK: L 530
Native File Names: ...l 532
Native File Numbers: ... 532
Enqueue Bvent: i 533
Nested Representation: 535
Native File Read: ...l 536
Native File Rename: _ 538
Native File Replace: 538
Native File Resize: ... L 540
Create Namespace: | ... il 540
Namespace Indicator: | 542
Native File S1Z€: ..o e e 542
Native File T .ol 543
NUL M e e 544
Native File Untie: ... 545
Native File Translate: 545
Sign OFF AP 546
VAT AN 546
Object Representation: 547
Search Path: | 551
Program Function Key: ... 553
Print PreCiSION: | 554
Profile Application: L 555
Print Wadth: 562
Cross ReferenCes: 563
RePIaCe: L 564
Random LinK: 583

Space Indicator: 585

11

Response Time Limit: ... 586
S aTC . L 586
Save WoorKSPaCe: 586
Screen DImenSIONS: ... 587
Session NameSPACE:o 587
Execute (UNIX) Command: e 588
Start UNIX Auxiliary Processor: 589
State IndiCator: | 590
Shadow Name: | .. 591
Signal EVent: 592
Siz€ 0f OB Ot 595
Screen Map: . 596
Screen Read: | 599
SO T . e 603
State Indicator StacK: ...l 604
State 0f OB eCt: L 605
St S 0D il 607
QUeTY StOD: L 608
Set Access Control: 609
Query Access Control: L 610
Shared Variable Offer: ... 611
Query Degree of Coupling: 613
Shared Variable QuUery: 613
Shared Variable Retract Offer: 614
Shared Variable State:l 615
Terminal Control: . 616
Thread Child Numbers: 617
Gt TOKENS: 617
IS SPACE: L 619
Current Thread Identity: ... 620
Kall Thread: .o e e 620
Current Thread Name: e e e e e 621
Thread NUmMberS: 621
ToKen POOL: 621
PUt TOK NS, o e 622
St TTaC . . 623
Query TraCe: il 624
Trap BVvent: il 625
Token ReqUeStS: ... 629
LM S M. L 630
Wait for Threads to Terminate: e e e 631
Unicode CONVeIt: ... 632
Using (Microsoft .Net Search Path): 635
Vector Representation: 636

Verify & Fix Input: L 637

Workspace Available: ... 638

Windows Create Object: 639
Windows Get Property: ... L 642
Windows Child Names: ... 643
Windows Set Property: . 644
Workspace Identification: 645
Window EXpOSe: .o 646
XML CONV et . 647
Extended State Indicator:l 661
Set External Variable: 662
Query External Variable: .. 664
Chapter 7: System Commands 665
IntrodUCtiON . 665
LSt ClasSeS: ool 667
Clear WorKSpace: ... 667
Windows Command Processor: 668
Save Continuation: ...l 669
Copy WoorksSpace: ... i 670
Change Space: o 672
Drop WoorKSpace: 672
Edit Object: 673
LSt EVents: .. 674
List Global Defined Functions: 674
Display Held ToKens: 675
List Workspace Library: ... 676
Load Workspace: 677
List Methods: 678
Create NamesPace: ...l 678
List Global Namespaces: 679
List Global Namespaces: 679
Sign Off AP 679
List Global Defined Operators: 679
Protected CoPY: ..o 680
st Properties: ... 681
Reset State Indicator: 681
Save WoorKSpaCe: ... iil. 681
Execute (UNIX) Command: 683
State Indicator: ... ill. 684
Clear State Indicator: ill. 685
State Indicator & Name List: iiiiiil.. 685
Thread Identity: ... 686
List Global Defined Variables: il 687

Workspace Identification: _ il 687

13

Load without Latent EXpression: 688
Chapter 8: Error MesSageso oo e 689
IntroductioN . 689
Standard Error AcCtion ...l 690
AP BrT0TS il 691
Operating System Error Messages oooiio . 695
Windows Operating System Error Messageso oo, 697
APL Error MeSSages 698

DA WS il 698

CanNOt Create NAME _ 698

Clear WS | iill. 698

COPY INCOMPIete 698

DEADLOCK .. L 698

defn eTTOT il 699

DOMAIN ERRO R L 700

EOF INTERRU T e 700

EXCEPTION L 700

FIELD CONTENTS RANK ERROR 701

FIELD CONTENTS TOO MANY COLUMNS 701

FIELD POSITION ERRO R 701

FIELD CONTENTS TYPE MISMATCH e 701

FIELD TYPE BEHAVIOUR UNRECOGNISED 701

FIELD ATTRIBUTES RANK ERROR 701

FIELD ATTRIBUTES LENGTH ERROR 701

FULL SCREEN ERRO R ... 701

KEY CODE UNRECOGNISED .. e 702

KEY CODE RANK ERROR 702

KEY CODE TYPE ERROR 702

FORMAT FILE ACCESS ERROR ... 702

FORMAT FILE ERROR ... 702

FILE ACCESS ERRO R .. 703

FILE ACCESS ERROR CONVERTING ... 703

FILE COMPONENT DAMAGED .. 703

FILE DAMAGED L 704

FILE FULL . 704

FILE INDEX ERRO R ... 704

FILE NAME ERRO R . L 704

FILENAME QUOTA USED UP ... e 705

FILE SYSTEM ERRO R . . . 705

FILE SYSTEM NO SPACE ... 705

FILE SYSTEM NOT AV AILABLE .. 705

FILE SYSTEM TIES USED U e 705

14

FILE TIED e e 706
FILE TIED REMOTELY e 706
FILE TIE QUOTA USED UP e 707
FORMAT ERRO R L 707
HOLD ERRO R . 707
incorrect comMmand 708
INDEX ERRO R . 708
INTERN AL ERRO R 709
INTER RU P L 709
ISTAMIC . .o 709
LENGTH ERRO R . 710
LIMIT ERRO R . 710
NONCE ERRO R o 710
NO PIPES . . L 710
NAME 1S MO & WS | oL 711
Name already eXiStS 711
Namespace does N0t XISt o 711
not copied NAME ... L 712
NOt fOUNd MAME . L 712
not saved this WS 1S NAME _l 712
OPTION ERRO R o 713
PROCESSOR TABLE FULL e 713
RANK ERRO R 714
RESIZE 714
name saved date time 714
SYNTAX ERRO R 715
SYS CITOr NUMDCT 716
TIMEOU T e 716
TRANSLATION ERRO R | 716
TRAP ERRO R 716
t00 MANY NAMES | 717
VALUE ERRO R L 717
warning duplicate label 717
warning duplicate name 718
warning pendent Operationl 718
warning label name present 718
warning unmatched brackets 719
warning unmatched parentheses 719
WAaS NAMNE . . 719
WS FULL 720
WS N0t TOUNA 720
WS t00 L0 720
Operating System Error MesSages oo 721
FILE ERROR 1 NOt OWINCT . . e e e e e i 721

15

FILE ERROR ST O eITOr ... 721
FILE ERROR 6 No such device e 721
FILE ERROR 13 Permission denied 721
FILE ERROR 20 Not a direCtory o 721
FILE ERROR 21 Is a direCtory o 722
FILE ERROR 23 File table overflow 722
FILE ERROR 24 Too many Open 722
FILE ERROR 26 Text file busy o 722
FILE ERROR 27 File too large e 722
FILE ERROR 28 No space left 722
FILE ERROR 30 Read only file e, 723
Appendices: PCRE Specifications 725
Appendix A - PCRE Syntax Summary 726
SYMbOliC INAEX . 733

Chapter 1:

Introduction

Workspaces

APL expressions are evaluated within a workspace. The workspace may contain
objects, namely operators, functions and variables defined by the user. APL expres-
sions may include references to operators, functions and variables provided by APL.
These objects do not reside in the workspace, but space is required for the actual proc-
ess of evaluation to accommodate temporary data. During execution, APL records

the state of execution through the STATE INDICATOR which is dynamically main-
tained until the process is complete. Space is also required to identify objects in the
workspace in the SYMBOL TABLE. Maintenance of the symbol table is entirely
dynamic. It grows and contracts according to the current workspace contents.

Workspaces may be explicitly saved with an identifying name. The workspace may
subsequently be loaded, or objects may be selectively copied from a saved work-
space into the current workspace.

Under UNIX, workspace names must be valid file names, but are otherwise
unrestricted. See your UNIX documentation for details.

Under Windows, Dyalog APL workspaces are stored in files with the suffix ".DWS".
However, they are referred to from within APL by only the first part of the file name
which must conform to Windows file naming rules.

Dyalog APL/W Programmer's Guide & Language Reference

Namespaces
Namespace is a (class 9) object in Dyalog APL. Namespaces are analogous to nested
workspaces.

'Flat' APL Workspace Workspace with Namespaces

OLD--—-=—— - . NEW---=-——— - —— .

| FOO MAT VEC |

DISPLAY | .Util-----—-—---- . |

| |DISPLAY | |

FOO MAT VEC | I... | I

| L 1 |

WsDoc_Init WsDoc------------- |

[Init .prt-..fmt--.

WsDoc_Tree
WsDoc_prt_init

I
| Tree | | | I
WsDoc_current_page |

| Xref |pagel]|
|] [}

|
|
|
|
|
| WsDoc_Xref
|
|
|
|
|

They provide the same sort of facility for workspaces as directories do for filesystems.
The analogy might prove helpful:

Operation Windows Namespace
Create MKDIR"apl""Dyalog" NS or [NS
Change CD)CS or [CS
Relative name DIRI\DIR2\FILE NS1.NS2.08BJ
Absolute name \DIR\FILE #.NS.0BJ
Name separator \

Top (root) object \ #

Parent object . ##

Chapter 1: Introduction 3

Namespaces bring a number of major benefits:

They provide static (as opposed to dynamic) local names. This means that a defined
function can use local variables and functions which persist when it exits and which
are available next time it is called.

Just as with the provision of directories in a filing system, namespaces allow us to
organise the workspace in a tidy fashion. This helps to promote an object oriented
programming style.

APL's traditional name-clash problem is ameliorated in several ways:

e Workspaces can be arranged so that there are many fewer names at each
namespace level. This means that when copying objects from saved work-
spaces there is a much reduced chance of a clash with existing names.

o Utility functions in a saved workspace may be coded as a single namespace
and therefore on being copied into the active workspace consume only a sin-
gle name. This avoids the complexity and expense of a solution which is
sometimes used in 'flat' workspaces, where such utilities dynamically fix
local functions on each call.

e In flat APL, workspace administration functions such as WSDOC must share
names with their subject namespace. This leads to techniques for trying to
avoid name clashes such as using obscure name prefixes like 'AAL1" This
problem is now virtually eliminated because such a utility can operate
exclusively in its own namespace.

The programming of GUI objects is considerably simplified.

e An object’s callback functions may be localised in the namespace of the
object itself.

e Static variables used by callback functions to maintain information between
calls may be localised within the object.

This means that the object need use only a single name in its namespace.

Dyalog APL/W Programmer's Guide & Language Reference

Arrays

A Dyalog APL data structure is called an array. An array is a rectangular arrange-
ment of items, each of which may be a single number, a single character, a namespace
reference (ref), another array, or the [JOR of an object. An array which is part of
another array is also known as a subarray.

An array has two properties; structure and data type. Structure is identified by rank,
shape, and depth.

Rank

An array may have 0 or more axes or dimensions. The number of axes of an array is
known as its rank. Dyalog APL supports arrays with a maximum of 15 axes.

e An array with 0 axes (rank 0) is called a scalar.
e An array with 1 axis (rank 1) is called a vector.
e An array with 2 axes (rank 2) is called a matrix.
e An array with more than 2 axes is called a multi-dimensional array.

Shape

Each axis of an array may contain zero or more items. The number of items along
each axis of an array is called its shape. The shape of an array is itself a vector. Its
first item is the length of the first axis, its second item the length of the second axis,
and so on. An array, whose length along one or more axes is zero, is called an empty
array.

Depth

An array whose items are all simple scalars (i.e. single numbers, characters or refs) is
called a simple array. If one or more items of an array is not a simple scalar (i.e. is
another array, or a [JOR), the array is called a nested array. A nested array may con-
tain items which are themselves nested arrays. The degree of nesting of an array is
called its depth. A simple scalar has a depth of 0. A simple vector, matrix, or multi-
dimensional array has depth 1. An array whose items are all depth 1 subarrays has
depth 2; one whose items are all depth 2 subarrays has depth 3, and so forth.

Chapter 1: Introduction

Type

An array, whose elements are all numeric, is called a numeric array; its TYPE is
numeric. A character array is one in which all items are characters. An array whose
items contain both numeric and character elements is of MIXED type.

Numbers

Dyalog APL supports both real numbers and complex numbers.

Real Numbers

Numbers are entered or displayed using conventional decimal notation (e.g.
299792.458) or using a scaled form (e.g. 2.999792458ES5).

On entry, a decimal point is optional if there is no fractional part. On output, a
number with no fractional part (an integer) is displayed without a decimal point.

The scaled form consists of:

a. an integer or decimal number called the mantissa,
b. the letter E or e,
c. an integer called the scale, or exponent.

The scale specifies the power of 10 by which the mantissa is to be multiplied.

Example

12 23.24% 23.0 2.145E2
12 23.24% 23 214.5

Negative numbers are preceded by the high minus (7) symbol, not to be confused
with the minus (-) function. In scaled form, both the mantissa and the scale may be
negative.

Example

T22 2.145E72 T10.25
~22 0.02145 710.25

Dyalog APL/W Programmer's Guide & Language Reference

Complex Numbers

Complex numbers use the J notation introduced in IBM APL2 and are written as aJb
orajb (without spaces) where the real and imaginary parts a and b are written as
described above. The capital J is always used to display a value.

Examples

2+471%.5

271

.3j.5

0.3J0.5
1.2E5J 4E™ 4

120000J70.0004

The empty vector (1 0) may be represented by the numeric constant € called ZILDE.

Characters

Characters are entered within a pair of APL quotes. The surrounding APL quotes are
not displayed on output. The APL quote character itself must be entered as a pair of
APL quotes.

Examples

'‘DYALOG APL'
DYALOG APL

‘I DON''T KNOW'
I DON'T KNOW

V!

Chapter 1: Introduction

Enclosed Elements

An array may be enclosed to form a scalar element through any of the following
means:

e by the enclose function (<)
e by inclusion in vector notation
o as the result of certain functions when applied to arrays

Examples

(e¢1 2 3),c'ABC'
1 2 3 ABC

(1 2 3) 'ABC'
1 2 3 ABC

12 3
11 12 13
21 22 23

8 Dyalog APL/W Programmer's Guide & Language Reference

Legal Names

APL objects may be given names. A name may be any sequence of characters, start-
ing with an alphabetic character, selected from the following:
0123456789(but not as the 15 character in a name)

ABCDEFGHIJKLMNOPQRSTUVWXYZ_
abcdefghijklmnopgrstuvwxyz
ARAARECEEEEIIITPNOOOOOEUODUYR
d35azceééeiiiion 0 U

>
e >
>
o
Bl
L)
m.

(Y%

a
A
ABCDEFGHIJKLMNOPQRSTUVWXY?Z

>

Note that using a standard Unicode font (rather than APL385 Unicode used in the
table above), the last row above would appear as the circled alphabet, ® to @.

Examples
Legal Illegal
THISAISAAANAME BAD NAME
X1233 3+21
SALES SIH|PRICE
pib_1 1_pjb

Specification of Variables

A variable is a named array. An undefined name or an existing variable may be
assigned an array by specification with the left arrow («).

Examples

A<'CHIPS WITH EVERYTHING'
A

CHIPS WITH EVERYTHING

X Y«'ONE' 'TWO'
X

ONE
Y

TWO

Chapter 1: Introduction 9

Vector Notation

A series of two or more adjacent expressions results in a vector whose elements are
the enclosed arrays resulting from each expression. This is known as VECTOR (or
STRAND) NOTATION. Each expression in the series may consist of one of the fol-
lowing:

a. a single numeric value;

single character, within a pair of quotes;

more than one character, within a pair of quotes;

the name of a variable;

the evaluated input symbol [;

the quote-quad symbol [I;

the name of a niladic, defined function yielding a result;

any other APL expression which yields a result, within parentheses.

50 mo a0 o

Examples

pA<2 4 10
3

pTEXT«<'ONE' 'TWO'
2

Numbers and characters may be mixed:

pX«'THE ANSWER IS ' 10

2
X[1]
THE ANSWER IS
X[2] + 32
42

Blanks, quotes or parentheses must separate adjacent items in vector notation.
Redundant blanks and parentheses are permitted. In this manual, the symbol pair
'«~'indicates the phrase 'is equivalent to'.

10

Dyalog APL/W Programmer's Guide & Language Reference

1 2 < (1)(2) «- 1 (2) <> (1) 2
2'X'3 «> 2 'X" 3 «> (2) ('X") (3)
1 (2+2) <> (1) ((2+2)) <> ((1)) (2+2)

Vector notation may be used to define an item in vector notation:
pX « 1 (2 3 4) ('THIS' 'AND' 'THAT')

X[2]
234
X[3]
THIS AND THAT

Expressions within parentheses are evaluated to produce an item in the vector:

Y « (2+2) 'IS' &4
Y

4 IS 4

The following identity holds:

A B C <> (cA), (eB), <C

Structuring of Arrays

A class of primitive functions re-structures arrays in some way. Arrays may be input
only in scalar or vector form. Structural functions may produce arrays with a higher
rank. The Structural functions are reshape (p), ravel, laminate and catenate (,), rever-
sal and rotation (¢), transpose (&), mix and take (1), split and drop (+), and enclose
(). These functions are described in Chapter 4.

Examples
2 2p1 2 3 &4

w =
F N

2 2 4p'ABCDEFGHIJKLMNOP'
ABCD
EFGH

IJKL
MNOP
42 4p'COWSHENS'
COWS HENS

Chapter 1: Introduction 11

Display of Arrays

Simple scalars and vectors are displayed in a single line beginning at the left margin.
A number is separated from the next adjacent element by a single space. The number
of significant digits to be printed is determined by the system variable [JPP whose
default value is 10. The fractional part of the number will be rounded in the last
digit if it cannot be represented within the print precision. Trailing zeros after a dec-
imal point and leading zeros will not be printed. An integer number will display
without a decimal point.

Examples

0.1 1.0 1.12
0.1 1 1.12

IAI 2 IBI Icl
A 2 BC

33 2 6

0.3333333333 0.5 0.1666666667

If a number cannot be fully represented in (PP significant digits, or if the number
requires more than five leading zeros after the decimal point, the number is rep-
resented in scaled form. The mantissa will display up to (PP significant digits, but
trailing zeros will not be displayed.

Examples
Opp<3

123 1234 12345 0.12345 0.00012345 0.00000012345
123 1.23E3 1.23E4 0.123 0.000123 1.23E77

Simple matrices are displayed in rectangular form, with one line per matrix row. All
elements in a given column are displayed in the same format, but the format and
width for each column is determined independently of other columns. A column is
treated as numeric if it contains any numeric elements. The width of a numeric col-
umn is determined such that the decimal points (if any) are aligned; that the E char-
acters for scaled formats are aligned, with trailing zeros added to the mantissae if
necessary, and that integer forms are right-adjusted one place to the left of the dec-
imal point column (if any). Numeric columns are right-justified; a column which
contains no numeric elements is left-justified. Numeric columns are separated from
their neighbours by a single column of blanks.

12 Dyalog APL/W Programmer's Guide & Language Reference

Examples

2 4p'HANDFIST'
HAND
FIST

123 9°.x625
6 2 5
12 4+ 10
18 6 15

2 3p2 4+ 6.1 8 10.24% 12
2 4 6.1
8 10.24% 12

2 4p4 'A' 'B' 5 T0.000000003 'C' 'D' 123.56
LEO AB 5
“3E79 CD 123.56

In the display of non-simple arrays, each element is displayed within a rectangle such
that the rows and columns of the array are aligned. Simple items within the array are
displayed as above. For non-simple items, this rule is applied recursively, with one
space added on each side of the enclosed element for each level of nesting.

Examples
13

c13
12 3

cc13

123

('ONE' 1) ('TWO' 2) ('THREE' 3) ('FOUR' &)
ONE 1 TWO 2 THREE 3 FOUR L4

2 4Lp'ONE' 1 'TWO' 2 'THREE' 3 'FOUR' 4
ONE 1 TWO 2
THREE 3 FOUR &

Multi-dimensional arrays are displayed in rectangular planes. Planes are separated
by one blank line, and hyper-planes of higher dimensions are separated by increasing
numbers of blank lines. In all other respects, multi-dimensional arrays are displayed
in the same manner as matrices.

Chapter 1: Introduction 13

Examples

2 3 Lpi2k
1 2 3 &
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20

21 22 23 24

3 11 3p'THEREDFOX'
THE

RED

FOX

The power of this form of display is made apparent when formatting informal reports.

Examples

+AREAS<«'West' 'Central' 'East'
West Central East

+PRODUCTS«'Biscuits' 'Cakes' 'Buns' 'Rolls’
Biscuits Cakes Buns Rolls

SALES«50 5.25 75 250 20.15 900 500
SALES,«80.98 650 1000 90.03 1200
+SALES<«4 3pSALES
50 5.25 75
250 20.15 900
500 80.98 650
1000 90.03 1200

' ' PRODUCTS 5., AREAS SALES
West Central East

Biscuits 50 5.25 75
Cakes 250 20.15 900
Buns 500 80.98 650

Rolls 1000 90.03 1200

14 Dyalog APL/W Programmer's Guide & Language Reference

Ifthe display of an array is wider than the page width, as set by the system variable
[PW, it will be folded at or before JPW and the folded portions indented six spaces.
The display of a simple numeric or mixed array may be folded at a width less than
[PW so that individual numbers are not split across a page boundary.

Example
OPW+L40

73 20p100
54 22 5 68 68 9% 39 52 84 4 6 53 68
85 53 10 66 42 71 92 77 27 5 74 33 64
66 8 64 89 28 44 77 48 24 28 36 17 49

1 39 7 42 69 49 94

76 100 37 25 99 73 76

90 91 7 91 51 52 32

The Display Function

The DISPLAY function is implemented as a user command]display distributed
with Dyalog APL and may be used to illustrate the structure ofan array.]Jdisplay
is monadic. Its result is a character matrix containing a pictorial representation of its
argument.]display isused throughout this manual to illustrate examples. An
array is illustrated with a series of boxes bordering each sub-array. Characters embed-
ded in the border indicate rank and type information. The top and left borders con-
tain symbols that indicate its rank. A symbol in the lower border indicates type.

The symbols are defined as follows:

Vector.

Matrix or higher rank array.
Empty along last axis.

Empty along other than last axis.

m © 0 <«

Nested array.
~ Numeric data.
- Character data.
Mixed character and numeric data.
v [OR object.
array of refs.

Jdisplay 'ABC' (1 4p1 2 3 4)

Chapter 1: Introduction 15

Prototypes and Fill Items

Every array has an associated prototype which is derived from the array's first item.

Ifthe first item is a number, the prototype is 0. Otherwise, if the first item is a char-
acter, the prototypeis ' ' (space). Otherwise, if the first item is a (refto) an instance
of'a Class, the prototype is a ref to that Class.

Otherwise (in the nested case, when the first item is other than a simple scalar), the
prototype is defined recursively as the prototype of each of the array's first item.

Examples:
Array Prototype
12 3.4 0

2 3 5p'hello’ b

99 'b' 66 0

(1 2)(3 4 5) 00

((1 2)3)(4+ 5 6) (0 0)0

‘hello' 'world' ' '

ONEW MyClass MyClass

(88([ONEW MyClass)'X"')7 0 MyClass ' '
Fill ltems

Fill items for an overtake operation, are derived from the argument's prototype. For
each O or ' ' in the prototype, there is a corresponding 0 or ' ' in the fill item and
for each class reference in the prototype, there is a ref to a (newly constructed and dis-
tinct) instance of that class that is initialised by the niladic (default) constructor for
that class, if defined.

Examples:
b1+1 2
1200
Lt+'ab'
ab

bLt(1 2)(3 4 5)
12 345 00 00O
21[ONEW MyClass
#.[Instance of MyClass] #.[Instance of MyClass]

16 Dyalog APL/W Programmer's Guide & Language Reference

In the last example, two distinct instances are constructed (the first by ONEW and the
second by the overtake).

Fill items are used in a number of operations including:

e First (2 or t) of an empty array
¢ Fill-elements for overtake
e For use with the Each operator on an empty array

Chapter 1: Introduction 17

Expressions

An expression is a sequence of one or more syntactic tokens which may be symbols
or constants or names representing arrays (variables) or functions. An expression
which produces an array is called an ARRAY EXPRESSION. An expression which
produces a function is called a FUNCTION EXPRESSION. Some expressions do not
produce a result.

An expression may be enclosed within parentheses.

Evaluation of an expression proceeds from right to left, unless modified by
parentheses. Ifan entire expression results in an array that is not assigned to a name,
then that array value is displayed. (Some system functions and defined functions
return an array result only if the result is assigned to a name or if the result is the argu-
ment of a function or operator.)

Examples
X«2x3-1
2x3-1

4
(2x3)-1

5

Either blanks or parentheses are required to separate constants, the names of var-
iables, and the names of defined functions which are adjacent. Excessive blanks or
sets of parentheses are redundant, but permitted. If F is a function, then:

F 2o F(2) <> (F)2 «» (F) (2) «» F (2) <> F ((2))

Blanks or parentheses are not needed to separate primitive functions from names or
constants, but they are permitted:

2 «> (2)(2) «> (-) 2

Blanks or parentheses are not needed to separate operators from primitive functions,
names or constants. They are permitted with the single exception that a dyadic oper-
ator must have its right argument available when encountered. The following syn-
tactical forms are accepted:

(+.x) > (+).x > +.(x)
The use of parentheses in the following examples is not accepted:

+(.)x or (+.)x

18 Dyalog APL/W Programmer's Guide & Language Reference

Functions

A function is an operation which is performed on zero, one or two array arguments
and may produce an array result. Three forms are permitted:

e NILADIC defined for no arguments
e MONADIC defined for a right but not a left argument
e DYADIC defined for a left and a right argument

The number of arguments is referred to as its VALENCE.

The name of a non-niladic function is AMBIVALENT; that is, it potentially rep-
resents both a monadic and a dyadic function, though it might not be defined for
both. The usage in an expression is determined by syntactical context. Ifthe usage
is not defined an error results.

Functions have long SCOPE on the right; that is, the right argument of the function
is the result of the entire expression to its right which must be an array. A dyadic
function has short scope on the left; that is, the left argument of the function is the
array immediately to its left. Left scope may be extended by enclosing an expression
in parentheses whence the result must be an array.

For some functions, the explicit result is suppressed if it would otherwise be dis-
played on completion of evaluation of the expression. This applies on assignment to
a variable name. It applies for certain system functions, and may also apply for

defined functions.
Examples
10x5-2xY4
~30
2xlh
8
5-8
-3
10x~3
~30
(10x5)-2x4

42

Chapter 1: Introduction 19

Defined Functions

Functions may be defined with the system function [OF X, or with the function editor.
A function consists of a HEADER which identifies the syntax of the function, and a
BODY in which one or more APL statements are specified.

The header syntax identifies the function name, its (optional) result and its (optional)
arguments. If a function is ambivalent, it is defined with two arguments but with the
left argument within braces ({}). Ifan ambivalent function is called monadically,
the left argument has no value inside the function. Ifthe explicit result is to be sup-
pressed for display purposes, the result is shown within braces. A function need not
produce an explicit result. Referto Chapter 2 for further details.

Example

v R«{A} FOO B
[1] R<>'MONADIC' 'DYADIC'[0OIO+0#[NC'A"']

[2] v

FOO 1
MONADIC

‘X' FOO 'Y'
DYADIC

Functions may also be created by using assignment («).

20 Dyalog APL/W Programmer's Guide & Language Reference

Function Assignment & Display

The result of a function-expression may be given a name. This is known as FUNC-
TION ASSIGNMENT (see also "Dynamic Functions & Operators" on page 113). If
the result of a function-expression is not given a name, its value is displayed. This is

termed FUNCTION DISPLAY.
Examples
PLUS<«+
PLUS
+
SUM<«+/
SUM
+/

Function expressions may include defined functions and operators. These are dis-
played as a v followed by their name.

Example
V R<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
\'4
MEAN
VMEAN
AVERAGE<MEAN
AVERAGE
VMEAN
AVG<MEANo
AVG

VMEAN o,

Chapter 1: Introduction 21

Operators

An operator is an operation on one or two operands which produces a function called
a DERIVED FUNCTION. An operand may be a function or an array. Operators are
not ambivalent. They require either one or two operands as applicable to the par-
ticular operator. However, the derived function may be ambivalent. The derived
function need not return a result. Operators have higher precedence than functions.
Operators have long scope on the left. That is, the left operand is the longest func-
tion or array expression on its left. The left operand may be terminated by:

the end of the expression

the right-most of two consecutive functions
a function with an array to its left

an array with a function to its left

AW N =

an array or function to the right of a monadic operator.

A dyadic operator has short scope on the right. That is, the right operand of an oper-
ator is the single function or array on its right. Right scope may be extended by
enclosing an expression in parentheses.

Examples
p"X«<'WILLIAM' 'MARY' 'BELLE'
7 4 5
pop X
1 1 1
(pep) X
1 1 1

Qo<«o[VR™'PLUS' 'MINUS'
V R«A PLUS B
[1] R<A+B
v
vV R«A MINUS B
[1] R<A-B
v

PLUS/1 2 3 &4
10

22 Dyalog APL/W Programmer's Guide & Language Reference

Defined Operators

Operators may be defined with the system function [F X, or with the function editor.
A defined operator consists of a HEADER which identifies the syntax of the oper-
ator, and a BODY in which one or more APL statements are specified.

A defined operator may have one or two operands; and its derived function may have
one or two arguments, and may or may not produce a result. The header syntax
defines the operator name, its operand(s), the argument(s) to its derived function, and
the result (if any) of'its derived function. The names of the operator and its operand(s)
are separated from the name(s) of the argument(s) to its derived function by paren-

theses.
Example
vV R<A(F AND G)B
[1] R«(A F B)(A G B)
v

The above example shows a dyadic operator called AND with two operands (F and
G). The operator produces a derived function which takes two arguments (A and B),
and produces a result (R).

12 +AND+ 4
16 3

Operands passed to an operator may be either functions or arrays.

12 (3 AND 5) 4
12 3 4+ 12 5 4

12 (x AND 5) 4
48 12 5 4

Chapter 1: Introduction 23

Complex Numbers

A complex number is a number consisting of a real and an imaginary part which is
usually written in the form a+ bi, where a and b are real numbers, and i is the stand-
ard imaginary unit with the property i?=—1.

Dyalog APL adopts the J notation introduced in IBM APL2 to represent the value of
a complex number which is written as aJb or a jb (without spaces). The former rep-
resentation (with a capital J) is always used to display a value.

Notation

2+71% .5
2J1

.3j.5
0.3J0.5

1.2EBT74E™Y
120000J70.0004

Arithmetic

The arithmetic primitive functions handle complex numbers in the appropriate way.

2j3+.3j.5 A (a+bi)+(c+di) = (a+c)+(b+d)i
2.3J3.5

2j3-.33j5 A (a+bi)-(c+di) = (a-c)+(b-d)i
1.7J72

2j3x.3j.5 A (a+bi)(c+di)= ac+bci+adi+bdi?
A = (ac-bd)+(bc+ad)i
~0.9J1.9

24 Dyalog APL/W Programmer's Guide & Language Reference

The absolute value, or magnitude of a complex number is naturally obtained using
the Magnitude function

13i4
5

Monadic + of a complex number (a+bi) returns its conjugate (a-bi) ...
+3j4
3774
... which when multiplied by the complex number itself, produces the square of its
magnitude.

3j4x33§74
25

Furthermore, adding a complex number and its conjugate produces a real number:

3j4+3j7 4
6

The famous Euler's Identityei” + 1 = 0 may be expressed as follows:

1+*x00j1 A Euler Identity
0

Different Result for Power

From Version 13.0 onwards, the implementation of X*Y (Power) gives a different
answer for negative real X than in all previous Versions of Dyalog APL. This change
is however in accordance with the ISO/EEC 13751 Standard for Extended APL.

In Version 13.0 onwards, the result is the principal value; whereas in previous Ver-
sions the result is a negative or positive real number or DOMAIN ERROR. The fol-
lowing examples illustrate this point:

8 x 1 2 + 3 A Version 12.1
24

8 x 1 2 + 3 A Version 13.0
1J1.732050808 72J3.464101615

*x (1 2+ 3) x e 78 A Version 13.0
1J1.732050808 ~2J3.464101615

Chapter 1: Introduction 25

Circular functions

The basic set of circular functions XoY cater for complex values in Y, while the fol-
lowing extended functions provide specific features for complex arguments. Note
that a and b are the real and imaginary parts of Y respectively and 0 is the phase of Y..

(-X) oY X |X oY

-8oY 8 (-1+Y*2)x0.5
Y 9 a

+Y 10 |1Y

Yx0J1 11 |[b

*Yx0J1 12 |6

Note that 90Y and 110Y return the real and imaginary parts of Y respectively:

9 1103.5771.2
3.5 71.2

9 110.,03.5J71.2 2J3 3J4
2
3

3.5 3
1.2 4

26 Dyalog APL/W Programmer's Guide & Language Reference

Comparison

In comparing two complex numbers X and Y, X=Y is 1 if the magnitude of X-Y
does not exceed [ICT times the larger of the magnitudes of X and Y; geometrically,
X=Y if the number smaller in magnitude lies on or within a circle centred on the one
with larger magnitude, having radius [JCT times the larger magnitude.

A=B
A=C
AzD B
. A
. D
-
c\\
0
re0ct=|a

As with real values, complex values sufficiently close to Boolean or integral values
are accepted by functions which require Boolean or integral values. For example:

2jle™ 14 p 12
12 12

0 V 1jle™15
0
Note that Dyalog APL always stores complex numbers as a pair of 64-bit binary float-
ing-point numbers, regardless of the setting of JF R. Comparisons between complex
numbers and decimal floating-point numbers will require conversion of the decimal
number to binary to allow the comparison. When [JFR=1287, comparisons are
always subject to DCT, not [ICT - regardless of the data type used to represent a
number.

This only really comes into play when determining whether the imaginary part of a
complex number is so small that it can be considered to be on the real plane. How-
ever, Dyalog recommends that you do not mix the use of complex and decimal
numbers in the same component of an application.

Chapter 1: Introduction 27

128 Bit Decimal Floating-Point Support
Introduction

The original IEE-754 64-bit binary floating point (FP) data type (also known as type
number 645), that is used internally by Dyalog APL to represent floating-point
values, does not have sufficient precision for certain financial computations — typ-
ically involving large currency amounts. The binary representation also causes errors
to accumulate even when all values involved in a calculation are “exact” (rounded)
decimal numbers, since many decimal numbers cannot be accurately represented
regardless of the precision used to hold them. To reduce this problem, Dyalog APL
includes support for the 128-bit decimal data type described by IEEE-754-2008 as an
alternative representation for floating-point values.

System Variable: JFR

Computations using 128-bit decimal numbers require twice as much space for stor-
age, and run more than an order of magnitude more slowly on platforms which do not
provide hardware support for the type. At this time, hardware support is only avail-
able from IBM (Power chips starting with the “P6”, and recent “z” series mainframes).
Even with hardware support, a slowdown of a factor of 4 can be expected. For this
reason, Dyalog allows users to decide whether they need the higher-precision dec-
imal representation, or prefer to stay with the faster and smaller binary representation.

A new system variable [JFR (for Floating-point Representation) can be set to the
value 645 (the installed default) to indicate 64-bit binary FP, or 1287 for 128-bit dec-
imal FP. The default value of [JFR is configurable.

Simply put, the value of OFR decides the type of the result of any floating-point cal-
culation that APL performs. In other words, when entered into the session:

OfFR
OFR

DR 1.234% a Type of a floating-point constant
(orR 3+4 A Type of any floating-point result

28 Dyalog APL/W Programmer's Guide & Language Reference

OFR has workspace scope, and may be localised. If so, like most other system var-
iables, it inherits its initial value from the global environment.

However: Although [JFR can vary, the system is not designed to allow “seamless”
modification during the running of an application and the dynamic alteration of JFR
is not recommended. Strange effects may occur. For example, the type of a constant
contained in a line of code (in a function or class), will depend on the value of JFR
when the function is fixed. Similarly, a constant typed into a line in the Session is
evaluated using the value of [JFR that pertained before the line is executed. Thus, it
would be possible for the first line of code above to return 0, if it is in the body ofa
function. If the function was edited and while suspended and execution is resumed,
the result would become 1. Also note:

[OFR«1287
x«1+3

JFR<645
x=1+3
1

The decimal number has 17 more 3s. Using the tolerance which applies to binary
floats (type 645), the numbers are equal. However, the “reverse” experiment yields 0,
as tolerance is much narrower in the 128-bit universe:

[(OFR<645
x«1+3

[OFR«1287
x=1+3
0

Since [FR can vary, it will be possible for a single workspace to contain floating-
point values of both types (existing variables are not converted when 0FR is
changed). For example, an array that has just been brought into the workspace from
external storage may have a different type from [JFR in the current namespace. Con-
version (if necessary) will only take place when a new floating-point array is gen-
erated as the result of “a calculation”. The result of a computation returning a
floating-point result will not depend on the type of the arrays involved in the expres-
sion: [JFR at the time when a computation is performed decides the result type, alone.

Chapter 1: Introduction 29

Structural functions generally do NOT change the type, for example:

OFR<«1287
x<1.1 2.2 3.3

OFR«645

Odr x
1287

Odr 21x
1287

128-bit decimal numbers not only have greater precision (roughly 34 decimal digits);
they also have significantly larger range- from "1E6145 to 1E6145. Loss of pre-
cision is accepted on conversion from 645 to 1287, but the magnitude of a number
may make the conversion impossible, in which case a DOMAIN ERROR is issued:

0OFR«1287
x«<1E1000

OFR«645
x+0
DOMAIN ERROR

WARNING: The use of COMPLEX numbers when [JFR is 1287 is not rec-
ommended, because:

e any 128-bit decimal array into which a complex number is inserted or
appended will be forced in its entirety into complex representation, poten-
tially losing precision

o all comparisons are done using JDCT when [FR is 1287, and this is equiv-
alent to 0 for complex numbers.

Conversion between Decimal and Binary

Conversion of data from Binary to Decimal is logically equivalent to formatting, and
the reverse conversion is equivalent to evaluating input. These operations are per-
formed according to the same rules that are used when formatting (and evaluating)
numbers with [JPP set to 17 (guaranteeing that the decimal value can be converted
back to the same binary bit pattern). Because the precision of decimal floating-point
numbers is much higher, there will always be a large number of potential decimal
values which map to the same binary number: As with formatting, the rule is that the
SHORTEST decimal number which maps to a particular binary value will be used as
its decimal representation.

30 Dyalog APL/W Programmer's Guide & Language Reference

Data in component files will be stored without conversion, and only converted when
a computation happens. It should be stored in decimal form if it will repeatedly be
used by application code in which [JF Rhas the value 1287. Even in applications
which use decimal floating point everywhere, reading old component files con-
taining arrays of type 645, or receiving data via [INA, the .Net interface or other exter-
nal sources, will allow binary floating-point values to enter the system and require
conversion.

ODCT - Decimal Comparison Tolerance

When [F Rhas the value 1287, the system variable JDCT will be used to specify com-
parison tolerance. The default value of IDCT is 1E~28, and the maximum value is
2.3283064365386962890625E710 (the value is chosen to avoid fuzzy com-
parison of 32-bit integers).

Passing floating-point values using [JNA

ONA supports the data type “D” to represent the Densely Packed Decimal (DPD)
form of 128-bit decimal numbers, as specified by the IEEE-754 2008 standard. Dya-
log has decided to use DPD, which is the format used by IBM for hardware support,
on ALL platforms, although “Binary Integer Decimal” (BID) is the format that Intel
libraries use to implement software libraries to do decimal arithmetic. Experiments
have shown that the performance of 128-bit DPD and BID libraries are very similar
on Intel platforms. In order to avoid the added complication of having two internal
representations, Dyalog has elected to go with the hardware format, which is
expected to be adopted by future hardware implementations.

The support libraries for writing AP’s and DLL’s include new functions to extract the
contents of a value of type D as a string or double-precision binary “float” — and con-
vert data to D format.

Decimal Floats and Microsoft.NET

The Microsoft.NET framework contains a type named System.Decimal, which imple-
ments decimal floating-point numbers. However, it uses a different internal format
from that defined by IEEE-754 2008.

Dyalog APL includes a Microsoft.NET class (called Dyalog.Dec128), which will per-
form arithmetic on data represented using the “Binary Integer Decimal” format. All
computations performed by the Dyalog.Dec128 class will produce exactly the same
results as if the computation was performed in APL. A “DCT” property allows set-
ting the comparison tolerance to be used in comparisons, Ceiling/Floor, etc).

Chapter 1: Introduction 31

The Dyalog class is modelled closely after the existing System.Decimal type, pro-
viding the same methods (Add, Ceiling, Compare, CompareTo, Divide, Equals, Final-
ize, Floor, FromOA Currency, GetBits, GetHashCode, GetType, GetTypeCode,
MemberwiseClone, Multiply, Negate, Parse, Remainder, Round, Subtract, To*, Trun-
cate, TryParse) and operators (Addition, Decrement, Division, Equality, Explicit,
GreaterThan, GreaterThanOrEqual, Implicit, Increment, Inequality, LessThan, Less-
ThanOrEqual, Modulus, Multiply, Subtraction, UnaryNegation, UnaryPlus).

The “bridge” between Dyalog and .NET is able to cast floating-point numbers to or
from System.Double, System.Decimal and Dyalog.Dec128 (and perform all other rea-
sonable casts to integer types etc). Casting a Dyalog.Dec128 to or from strings will
perform a “lossless” conversion.

The .Net type System.Int64 will now always be cast to a 128-bit decimal number
when entering Dyalog APL, regardless of the setting of [JFR. So long as no 64-bit
arithmetic is performed on such a value, it will remain a 128-bit number and can be
passed back to .Net without loss.

32 Dyalog APL/W Programmer's Guide & Language Reference

Namespace Syntax

Names within namespaces may be referenced explicitly or implicitly. An explicit ref-
erence requires that you identify the object by its full or relative pathname using a
'. ' syntax; for example:

X.NUMB « 88
sets the variable NUMB in namespace X to 88.

88 UTIL.FOO 99

calls dyadic function FOO in namespace UTIL with left and right arguments of 88
and 99 respectively. The interpreter can distinguish between thisuse of ' . ' and its
use as the inner product operator, because the leftmost name: UTIL isa (class 9)
namespace, rather than a (class 3) function.

The general namespace reference syntax is:
SPACE . SPACE . (...) EXPR

Where SPACE is an expression which resolves to a namespace reference, and EXPR
is any APL expression to be resolved in the resulting namespace.

There are two special space names:
isthe top level or 'Root' namespace.
is the parent or space containing the current namespace.

[JSE is a system namespace which is preserved across workspace load and clear.

Examples
WSDOC.PAGE.NO +« 1 A Increment WSDOC page count
#.ONL 2 A Variables in root space
UTIL.OFX 'Z«DUP A' 'Z<«A A' A Fix remote function
##.0ED'FOO' A Edit function in parent space

[JSE.RECORD « PERS.RECORD A Copy from PERS to [SE

UTIL.(OeX ONL 2) A Expunge variables in UTIL

(20SE #).(e>40NL 9).(ONL 2) A Vars in first [SE
A namespace.

UTIL.&STRING A Execute STRING in UTIL space

Chapter 1: Introduction 33

You may also reference a function or operator in a namespace implicitly using the
mechanism provided by JEXPORT (See "Export Object:" on page 435) and
OPATH. If you reference a name that is undefined in the current space, the system
searches for it in the list of exported names defined for the namespaces specified by
(OPATH. See "Search Path: " on page 551 for further details.

Notice that the expression to the right of a dot may be arbitrarily complex and will
be executed within the namespace or ref to the left of the dot.

X.(C«AxB)

X.C
10 12 14
16 18 20

NS1.C
10 12 14
16 18 20

Summary

Apart from its use as a decimal separator (3. 14), “.’ is interpreted by looking at the
type or class of the expression to its left:

Template Interpretation Example
o, Outer product 2 3 o.x 45
function. |Inner product 2 3 +.x 45

ref.

Namespace reference

2 3 x.foo 4 5

array.

Reference array expansion

(x y).0Once'foo'

34 Dyalog APL/W Programmer's Guide & Language Reference

Namespace Reference Evaluation

When the interpreter encounters a namespace reference, it:

1.
2.
3.

Switches to the namespace.
Evaluates the name.
Switches back to the original namespace.

If for example, in the following, the current namespace is # . W, the interpreter eval-
uates the line:

A « X.Y.DUP MAT

in the following way:

1.

nbhw

Evaluate array MAT in current namespace W to produce argument for func-
tion.

Switch to namespace X.Y within W.

Evaluate function DUP in namespace W. X.Y with argument.

Switch back to namespace W.

Assign variable A in namespace W.

Chapter 1: Introduction 35

Namespaces and Localisation

The rules for name resolution have been generalised for namespaces.

In flat APL, the interpreter searches the state indicator to resolve names referenced by
a defined function or operator. Ifthe name does not appear in the state indicator,
then the workspace-global name is assumed.

With namespaces, a defined function or operator is evaluated in its 'home' names-
pace. When a name is referenced, the interpreter searches only those lines of the state
indicator which belong to the home namespace. If the name does not appear in any
of these lines, the home namespace-global value is assumed.

For example, if #.FN1 calls XX.FN2 calls #.FN3 calls XX.FN.4, then:

FN1:
is evaluated in #
can see its own dynamic local names
can see global names in #

FN2:
is evaluated in XX
can see its own dynamic local names
can see global names in XX

FN3:
is evaluated in #
can see its own dynamic local names
can see dynamic local names in FN1
can see global names in #

FNU:
is evaluated in XX
can see its own dynamic local names
can see dynamic local names in FN2
can see global names in XX

36 Dyalog APL/W Programmer's Guide & Language Reference

Namespace References

A namespace reference, or ref for short, is a unique data type that is distinct from and
in addition to number and character.

Any expression may result in a ref, but the simplest one is the namespace itself:

JNS NS1 A Make a namespace called NS1
NS1.A«1 A and populate it with variables A
NS1.B«2 3pib A and B

NS1 A expression results in a ref

#.NS1
You may assign a ref; for example:

X«<NS1
X
#.NS1

In this case, the display of X informs you that X refers to the named namespace
#.NS1.

You may also supply a ref as an argument to a defined or dynamic function:

vV FOO ARG
[1] ARG

v

FOO NS1
#.NS1

The name class of a ref'is 9.

ONc 'X'
9
You may use a ref to a namespace anywhere that you would use the namespace itself.
For example:
X.A
1
X.8B
123
4 56

Chapter 1: Introduction 37

Notice that refs are references to namespaces, so that if you make a copy, it is the ref-
erence that is copied, not the namespace itself. This is sometimes referred to as a shal-
low as opposed to a deep copy. It means that if you change a ref, you actually change
the namespace that it refers to.

X.A+<1
X.A
2
NS1.A
2

Similarly, a ref passed to a defined function is call-by-reference, so that modifications
to the content or properties of the argument namespace using the passed reference per-
sist after the function exits. For example:

V FOO nsref
[1] nsref.B+<nsref.A
\'4
FOO NS1
NS1.B
3 45
6 7 8
FOO X
NS1.B
56 7
8 9 10

Notice that the expression to the right of a dot may be arbitrarily complex and will
be executed within the namespace or ref to the left of the dot.

X.(C«AxB)
X.C

10 12 14

16 18 20
NS1.C

10 12 14

16 18 20

38 Dyalog APL/W Programmer's Guide & Language Reference

Unnamed Namespaces

The monadic form of JNS makes a new (and unique) unnamed namespace and
returns a ref'to it.

One use of unnamed namespaces is to represent hierarchical data structures; for exam-
ple, a simple employee database:

The first record is represented by JOHN which is a ref to an unnamed namespace:

JOHN<NS "'
JOHN
#.[Namespace]

JOHN.FirstName<«'John'
JOHN.FirstName
John

JOHN.LastName<«'Smith'
JOHN.Age<50

Data variables for the second record, PAUL, can be established using strand, or vec-
tor, assignment:

PAUL<[INS "'
PAUL.(FirstName LastName Age<«'Paul' 'Brown' ulk)

The function SHOW can be used to display the data in each record (the function is
split into 2 lines only to fit on the printed page). Notice that its argument is a ref.

V R<SHOW PERSON
[1] R<PERSON.FirstName,' ',PERSON.LastName
[2] R, «' is ',sPERSON.Age

\'

SHOW JOHN
John Smith is 50

SHOW PAUL
Paul Brown is 44

Chapter 1: Introduction 39

An alternative version of the function illustrates the use ofthe :With :EndWith
control structure to execute an expression, or block of expressions, within a names-
pace:

V R«<SHOW1 PERSON

[1] :With PERSON
[2] R«FirstName,' ',LastName,' is ', (sAge)
[3] :EndWith
\'4
SHOW1 JOHN

John Smith is 50

In this case, as only a single expression is involved, it can be expressed more simply
using parentheses.

V R«SHOW2 PERSON
[1] R<«PERSON. (FirstName,' ',LastName,' is ',(sAge))
\'4
SHOW2 PAUL
Paul Brown is 44

Dynamic functions also accept refs as arguments:

SHOW3«{
w.(FirstName,' ',LastName,' is ',sAge)

}

SHOW3 JOHN
John Smith is 50

40 Dyalog APL/W Programmer's Guide & Language Reference

Arrays of Namespace References

You may construct arrays of refs using strand notation, catenate (,) and reshape (p).

EMP«<JOHN PAUL
pEMP

EMP
#.[Namespace] #.[Namespace]

Like any other array, an array of refs has name class 2:

[ONC 'EMP'
2

Expressions such as indexing and pick return refs that may in turn be used as follows:

EMP[1].FirstName
John

(2oEMP) . Age
Lyl

The each (") operator may be used to apply a function to an array of refs:

SHOW ' EMP
John Smith is 50 Paul Brown is ik

An array of namespace references (refs) to the left ofa “.” is expanded according to
the following rule, where x and y are refs, and exp is an arbitrary expression:

(x y).exp = (x.exp)(y.exp)

If exp evaluates to a function, the items of its argument array(s) are distributed to
each referenced function. In the dyadic case, there is a 3-way distribution among: left
argument, referenced functions and right argument.

Monadic function f:

(x y).f d e~ (x.f d)(y.f e)
Dyadic function g:

ab(xy).g de > (a x.gd)(by.ge)
An array of refs to the left of an assignment arrow is expanded thus:

(x y).acc d > (x.a<c)(y.a<d)

Chapter 1: Introduction 41

Note that the array of refs can be of any rank. In the limiting case of a simple scalar
array, the array construct: refs.exp isidentical to the scalar construct: ref .exp

Note that the expression to the right of the “.” pervades a nested array of refs to its
left:

((u v)(x y)).exp = ((u.exp)(v.exp))((x.exp)(y.exp))

Note also that with successive expansions (u v).(x y z). ..,the final number
of ‘leaf” terms is the product of the number of refs at each level.

Examples:

JOHN.Children<[INS™"'" '
pJOHN.Chi ldren

JOHN.Children[1].FirstName<«'Andy'
JOHN.Children[1].Age<23

JOHN.Children[2].FirstName«'Katherine'
JOHN.Children[2].Age<«19

PAUL.Children<[INS™'"' "'
PAUL.Children[1].(FirstName Age<«'Tom' 25)
PAUL.Children[2].(FirstName Age<«'Jamie' 22)
pEMP

(2EMP).Children.(FirstName Age)
Andy 23 Katherine 19

Jdisplay (22EMP).Children.(FirstName Age)

| o S ———— - |
[| .. I [
| | |Tom| 25 | | |Jamiel|l 22 | |
[I '---" I ' [
| 'e--------- I "
1 E ____________________________ 1
EMP.Children A Is an array of refs
#.[Namespace] #.[Namespacel] #.[Namespace]

EMP.Children.(FirstName Age)
Andy 23 Katherine 19 Tom 25 Jamie 22

42 Dyalog APL/W Programmer's Guide & Language Reference

Distributed Assignment

Assignment pervades nested strands of names to the left of the arrow. The con-
formability rules are the same as for scalar (pervasive) dyadic primitive functions
such as “+’. The mechanism can be viewed as a way of naming the parts of a
structure.

Examples:

EMP. (FirstName Age)
JOHN 43 PAUL 44

EMP.(FirstName Age)<«('Jonathan' 21)('Pauline' 22)

EMP. (FirstName Age)
Johnathan 21 Pauline 22

A Distributed assignment is pervasive
JOHN.Children.(FirstName Age)
Andy 23 Katherine 19

JOHN.Children.(FirstName Age)<«('Andrew' 21)('Kate'
9)

JOHN.Children.(FirstName Age)
Andrew 21 Kate 9

More Examples:
((a b)(c d))«(1 2)(3 4) A a«<l 0 b<2 0 c«3 o d<k

((Oio Oml)vec)«0 bav A Oio<0 ¢ Oml«0 ¢ vec<[av
(i (j k))+«el 2 A itel O j+e2 o k+<2
A Naming of parts:
((first last) sex (street city state))«nopvec
A Distributed assignment in :For loop:
:For (i j)(k L) :In array
A Ref array expansion:

(x y).(first last)«('John' 'Doe')('Joe' 'Blow')
(f1 f2).(b1 b2).Caption«c'OK' 'Cancel'

Chapter 1: Introduction

A Structure rearrangement:

rotatel«{ A Simple binary tree rotation.
(a b c)d ecw
a b(c d e)

rotate3«{ A Compound binary tree rotation.

(a b(c d e))f g«w
(a b c)d(e f g)
}

Distributed Functions

Namespace ref array expansion syntax applies to functions too.

JOHN.PLOT«{twp™'O"}
JOHN.PLOT 10

0
oo
0o
aooa
00000
000000
0000000
00000000
000000000
0000000000
PAUL.PLOT<{(w, 1)p"'0"}
PAUL.PLOT 10
O00O0CD0O 0O.O0CTSO0OTQ oaG0
oo00o00@0a.o-ao0a
1 1 O L R I A
0 0O0OO0OO0T® O0a@o
O 00G0~D0aG0
o o0o0o0ao0an
o o00o0aG0
000
o0
O
EMP.PLOT<110 @ (temporary vector of functions)
0 O00O0CD0O0O0CTSO0OTQ 0aG0
oo oo00o00@0a.o-ao0a
0oo 1 1 O L R I A
0000 0 0O0OO0OO0T® O0a@o
00000 O 00G0~D0aG0
00oooo o o0o0o0ao0an
0000000 o o00o0aG0
00000000 000
000000000 o0
0000000000 O

44 Dyalog APL/W Programmer's Guide & Language Reference

(x y).ONL 2 3 A x:vars, y:fns
varx funy

(x y).0ONLc2 3 A x&y: vars&fns
funx funy
varx vary

(x y).(ONL")e2 3 A x&y: separate
vars&fns
varx funx vary funy
'v'(x y).ONL 2 3 A x:v-vars, y:v-fns
varx
'vf'(x y).ONL 2 3 A x:v-vars, y:f-fns

varx funy
A x:v-vars&fns,
'vf'(x y).0ONLe2 3 A y:f-vars&fns
varx funy

x.ONL 2 3 A depth 0 ref
funx
varx

(x y).0ONLc2 3 A depth 1 refs
funx funy
varx vary

((u v)(x y)).0ONLcc2 3 A depth 2 refs
funu funv funx funy
varu varv varx vary

(1 2)3 4(w(x y)z).+1 2(3 4) a argument
distribution.
23 55 78

Chapter 1: Introduction 45

Namespaces and Operators

A function passed as operand to a primitive or defined operator, carries its namespace
context with it. This means that if subsequently, the function operand is applied to
an argument, it executes in its home namespace, irrespective of the namespace from
which the operator was invoked or defined.

Examples
VAR<99 A #.VAR

INS X

X.VAR«77 A X.VAR
X.OFX'Z«FN R' 'Z<«R,VAR'

NS Y

Y.VAR<«88 A Y.VAR
Y.OFX'Z«(F OP)R' 'Z«F R'

X.FN"13
177 2 77 3 77

X.FN 'VAR:'
VAR: 77

X.FN Y.OP 'VAR:'
VAR: 77

¢ Y.OP'VAR'
99

46 Dyalog APL/W Programmer's Guide & Language Reference

Threads

Overview

Dyalog APL supports multithreading - the ability to run more than one APL expres-
sion at the same time.

This unique capability allows you to perform background processing, such as print-
ing, database retrieval, database update, calculations, and so forth while at the same
time perform other interactive tasks.

Multithreading may be used to improve throughput and system responsiveness.
A thread is a strand of execution in the APL workspace.

A thread is created by calling a function asynchronously, using the new primitive
operator ‘spawn’: & or by the asynchronous invocation of a callback function.

With a traditional APL synchronous function call, execution of the calling envi-
ronment is paused, pendent on the return of the called function. With an asyn-
chronous call, both calling environment and called function proceed to execute
concurrently.

An asynchronous function call is said to start a new thread of execution. Each thread
has a unique thread number, with which, for example, its presence can be monitored
or its execution terminated.

Any thread can spawn any number of sub-threads, subject only to workspace avail-
ability. This implies a hierarchy in which a thread is said to be a child thread of its
parent thread. The base thread at the root of this hierarchy has thread number 0.

With multithreading, APL’s stack or state indicator can be viewed as a branching
tree in which the path from the base to each leafiis a thread.

Chapter 1: Introduction 47

When a parent thread terminates, any of its children which are still running, become
the children of (are ‘adopted’ by) the parent’s parent.

Thread numbers are allocated sequentially from 0 to 2147483647. At this point, the
sequence ‘wraps around’ and numbers are allocated from 0 again avoiding any still
in use. The sequence is reinitialised when a)RESET command is issued, or the
active workspace is cleared, or a new workspace is loaded. A workspace may not be
saved with threads other than the base thread: 0, running.

Multi-Threading language elements.

The following language elements are provided to support threads.

Primitive operator, spawn: &.

System functions: JTID, OTCNUMS, OTNUMS, OTKILL, OTSYNC.
An extension to the GUI Event syntax to allow asynchronous callbacks.
A control structure: :Hold.

System commands:)HOLDS,) TID.

Extended)SI and) SINL display.

Running CallBack Functions as Threads

A callback function is associated with a particular event via the Event property of
the object concerned. A callback function is executed by [JDQ when the event
occurs, or by [INQ.

If you append the character & to the name of the callback function in the Event spec-
ification, the callback function will be executed asynchronously as a thread when
the event occurs. If not, it is executed synchronously as before.

For example, the event specification:
OWS'Event' 'Select' 'DoIt&'

tells (JDQ to execute the callback function Dolt asynchronously as a thread when a
Select event occurs on the object.

48 Dyalog APL/W Programmer's Guide & Language Reference

Thread Switching

Programming with threads requires care.
The interpreter may switch between running threads at the following points:

e Between any two lines of a defined (or dynamic) function or operator.
e While waiting for a DL to complete.
e While waiting for a JFHOLD to complete.
e While awaiting input from:
o [bQ
o [ISR
o [JED
e The session prompt or [: or[].
e While awaiting the completion of an external operation:
A call on an extemnal (AP) function.
A call on a [JNA (DLL) function
A call on an OLE function.
A call on a Net function.

O O O O

At any of these points, the interpreter might execute code in other threads. If such
threads change the global environment; for example by changing the value of, or
expunging a name; then the changes will appear to have happened while the thread
in question passes through the switch point. It is the task of the application pro-
grammer to organise and contain such behaviour!

You can prevent threads from interacting in critical sections of code by using the
:Ho l d control structure.

High Priority Callback Functions

Note that the interpreter cannot perform thread-switching during the execution ofa
high-priority callback. This is a callback function that is invoked by a high-priority
event which demands that the interpreter must return a result to Windows before it
may process any other event. Such high-priority events include Configure, Exit-
Windows, DateTimeChange, DockStart, DockCancel, DropDown. It is therefore not
permitted to use a : Ho L d control structure in a high-priority callback function.

Chapter 1: Introduction 49

Name Scope

APL’s name scope rules apply whether a function call is synchronous or asyn-
chronous. For example when a defined function is called, names in the calling envi-
ronment are visible, unless explicitly shadowed in the function header.

Just as with a synchronous call, a function called asynchronously has its own local
environment, but can communicate with its parent and ‘sibling’ functions via local
names in the parent.

This point is important. It means that siblings can run in parallel without danger of
local name clashes. For example, a GUI application can accommodate multiple con-
current instances of its callback functions.

However, with an asynchronous call, as the calling function continues to execute,
both child and parent functions may modify values in the calling environment. Both
functions see such changes immediately they occur.

If a parent function terminates while any of'its children are still running, those chil-

dren will thenceforward ‘see’ local names in the environment that called the parent

function. In cases where a child function relies on its parent’s environment (the set-

ting of a local value of JI0 for example), this would be undesirable, and the parent

function would normally execute a[JTSYNC in order to wait for its children to com-
plete before itself exiting.

If, on the other hand, after launching an asynchronous child, the parent function calls
a new function (either synchronously or asynchronously); names in the new function
are beyond the purview of the original child. In other words, a function can only ever
see its calling stack decrease in size — never increase. This is in order that the parent
may call new defined functions without affecting the environment of its asyn-
chronous children.

50 Dyalog APL/W Programmer's Guide & Language Reference

Using Threads

Put most simply, multithreading allows you to appear to ran more than one APL
function at the same time, just as Windows (or UNIX) appears to run more than one
application at the same time. In both cases this is something of an illusion, although
it does nothing to detract from its usefulness.

Dyalog APL implements an internal timesharing mechanism whereby it shares proc-
essing between threads. Although the mechanics are somewhat different, APL mul-
tithreading is rather similar to the multitasking provided by Windows. If you are
running more than one application, Windows switches from one to another, allo-
cating each one a certain time slice before switching. At any point in time, only one
application is actually running; the others are paused, waiting.

If you execute more than one Dyalog APL thread, only one thread is actually run-
ning; the others are paused. Each APL thread has its own State Indicator, or SI stack.
When APL switches from one thread to another, it saves the current stack (with all its
local variables and function calls), restores the new one, and then continues proc-
essing.

Stack Considerations

When you start a thread, it begins with the SI stack ofthe calling function and sees
all of the local variables defined in all the functions down the stack. However, unless
the calling function specifically waits for the new thread to terminate (see "Wait for
Threads to Terminate: " on page 631), the calling functions will (bit by bit, in their
turn) continue to execute. The new thread’s view of'its calling environment may then
change. Consider the following example:

Suppose that you had the following functions: RUN[3] calls INIT which in turn
calls GETDATA but as 3 separate threads with 3 different arguments:

V RUN;A;B

[1] A<l

[2] B«<'Hello World'
[3] INIT

[4] CALC

[5] REPORT

Chapter 1: Introduction 51

v INIT;C;D
[1] C<«D<«0
[2] GETDATA&'Sales'
[3] GETDATA& 'Costs'
[4] GETDATA& 'Expenses'’
\

When each GETDATA thread starts, it immediately sees (via JSI) that it was called
by INIT which was in turn called by RUN, and it sees local variables A, B, C and D.
However, once INIT[4] has been executed, INIT terminates, and execution of the
root thread continues by calling CALC. From then on, each GETDATA thread no
longer sees INIT (it thinks that it was called directly from RUN) nor can it see the
local variables C and D that INIT had defined. However, it does continue to see the
locals A and B defined by RUN, until RUN itself terminates.

Note that if CALC were also to define locals A and B, the GETDATA threads would
still see the values defined by RUN and not those defined by CALC. However, if
CALC were to modify A and B (as globals) without localising them, the GETDATA
threads would see the modified values of these variables, whatever they happened to
be at the time.

Globals and the Order of Execution

It is important to recognise that any reference or assignment to a global or semi-
global object (including GUI objects) is inherently dangerous (i.c. a source of pro-
gramming error) if more than one thread is running. Worse still, programming errors
of this sort may not become apparent during testing because they are dependent upon
random timing differences. Consider the following example:

v BUG;SEMI_GLOBAL
[1] SEMI_GLOBAL<«0
[2] FOO& 1
[3] GOO& 1

\'4
vV FOO
[1] :If SEMI_GLOBAL=0
[2] DO_SOMETHING SEMI_GLOBAL
[3] :Else
[4] DO_SOMETHING_ELSE SEMI_GLOBAL
[5] :EndIf
\'4
v GOO

[1] SEMI_GLOBAL<«1

52 Dyalog APL/W Programmer's Guide & Language Reference

In this example, it is formally impossible to predict in which order APL will execute
statements in BUG, FOO or GOO from BUG[2] onwards. For example, the actual
sequence of execution may be:

BUG[1] » BUG[2] » FOO[1] » FOO[2] ~
DO_SOMETHING([1]

or

BUG[1] » BUG[2] -» BUG[3] » GOO[1] ~
FOO[1] » FOO[2] » FOO[3] ~»
FOO[4] -~ DO_SOMETHING_ELSE[1]

This is because APL may switch from one thread to another between any two lines in
a defined function. In practice, because APL gives each thread a significant time-
slice, it is likely to execute many lines, maybe even hundreds of lines, in one thread
before switching to another. However, you must not rely on this; thread-switching
may occur at any time between lines in a defined function.

Secondly, consider the possibility that APL switches from the FOO thread to the GOO
thread after FOO[1]. If this happens, the value of SEMI_GLOBAL passed to DO_
SOMETHING will be 1 and not 0. Here is another source of error.

In fact, in this case, there are two ways to resolve the problem. To ensure that the
value of SEMI_GLOBAL remains the same from FOO[1] to FOO[2], you may use
diamonds instead of separate statements, e.g.

:If SEMI_GLOBAL=0 ¢ DO_SOMETHING SEMI_GLOBAL

Even better, although less efficient, you may use : Ho L d to synchronise access to the
variable, for example:

v FOO

[1] :Hold 'SEMI_GLOBAL'
[2] :If SEMI_GLOBAL=0
[3] DO_SOMETHING SEMI_GLOBAL
[4] :Else
[5] DO_SOMETHING_ELSE SEMI_GLOBAL
[6] :EndIf
[7] :EndHold

\'4

v GOO
[1] :Hold 'SEMI_GLOBAL'
[2] SEMI_GLOBAL<«1

[3] :EndHold
v

Chapter 1: Introduction 53

Now, although you still cannot be sure which of FOO and GOO will run first, you can
be sure that SEMI_GLOBAL will not change (because GOO cuts in) within FOO.

Note that the string used as the argument to : Ho L d is completely arbitrary, so long
as threads competing for the same resource use the same string.

A Caution

These types of problems are inherent in all multithreading programming languages,
and not just with Dyalog APL. If you want to take advantage of the additional
power provided by multithreading, it is advisable to think carefully about the poten-
tial interaction between different threads.

Threads & Niladic Functions

e In common with other operators, the spawn operator & may accept monadic
or dyadic functions as operands, but not niladic functions. This means that,
using spawn, you cannot start a thread that consists only of a niladic func-
tion

e If you wish to invoke a niladic function asynchronously, you have the fol-
lowing choices:

e Tum your niladic function into a monadic function by giving it a dummy
argument which it ignores.

e Call your niladic function with a dynamic function to which you give an
argument that is implicitly ignored. For example, if the function NIL is nila-
dic, you can call it asynchronously using the expression: ~ {NIL}& 0

e Call your function via a dummy monadic function, e.g.

v NIL_M DUMMY
[1] NIL

\4

NIL_M& "'

e Use execute, e.g.

& 'NIL'

Note that niladic functions can be invoked asynchronously as callback functions.
For example, the statement:

[OWS'Event' 'Select' 'NIL&'

will execute correctly as a thread, even though NIL is niladic. This is because call-
back functions are invoked directly by [IDQ rather than as an operand to the spawn
operator.

54 Dyalog APL/W Programmer's Guide & Language Reference

Threads & External Functions

External functions in dynamic link libraries (DLLs) defined using the [INA interface
may be run in separate C threads. Such threads:

o take advantage of multiple processors if the operating system permits.
e allow APL to continue processing in parallel during the execution of a
ONA function.

When you define an external function using [INA, you may specify that the function
be run in a separate C thread by appending an ampersand (&) to the function name,
for example:

'beep'[INA'user32|MessageBeep& i'
A MessageBeep will run in a separate C thread

When APL first comes to execute a multi-threaded [INA function, it starts a new C-
thread, executes the function within it, and waits for the result. Other APL threads
may then run in parallel.

Note that when the [JNA call finishes and returns its result, its new C-thread is
retained to be re-used by any subsequent multithreaded [INA calls made within the
same APL thread. Thus any APL thread that makes any multi-threaded ONA calls
maintains a separate C-thread for their execution. This C-thread is discarded when its
APL thread finishes.

Note that there is no point in specifying a [INA call to be multi-threaded, unless you
wish to execute other APL threads at the same time.

In addition, if your [INA call needs to access an APL GUI object (strictly, a window
or other handle) it should normally run within the same C-thread as APL itself, and
not in a separate C-thread. This is because Windows associates objects with the C-
thread that created them. Although you can use a multi-threaded [INA call to access
(say) a Dyalog APL Form via its window handle, the effects may be different than if
the [NA call was not multi-threaded. In general, (ONA calls that access APL (GUI)
objects should not be multi-threaded.

If you wish to run the same [INA call in separate APL threads at the same time, you
must ensure that the DLL is thread-safe. Functions in DLLs which are not thread-
safe, must be prevented from running concurrently by using the : Ho L d control struc-
ture. Note that all the standard Windows API DLLs are thread safe.

Notice that you may define two separate functions (with different names), one single-
threaded and one multi-threaded, associated with the same function in the DLL. This
allows you to call it in either way.

Chapter 1: Introduction 55

Synchronising Threads

Threads may be synchronised using tokens and a token pool.

An application can synchronise its threads by having one thread add tokens into the
pool whilst other threads wait for tokens to become available and retrieve them from
the pool.

Tokens possess two separate attributes, a type and a value.

The type of a token is a positive or negative integer scalar. The value of a token is
any arbitrary array that you might wish to associate with it.

The token pool may contain up to 2*31 tokens; they do not have to be unique
neither in terms of their types nor of their values.

The following system functions are used to manage the token pool:

gTpuT Puts tokens into the pool.

If necessary waits for, and then retrieves some tokens from the

OTGET
pool.

gtpooL Reports the types of tokens in the pool

OTREQ Reports the token requests from specific threads

A simple example of a thread synchronisation requirement occurs when you want
one thread to reach a certain point in processing before a second thread can continue.
Perhaps the first thread performs a calculation, and the second thread must wait until
the result is available before it can be used.

This can be achieved by having the first thread put a specific type of token into the
pool using JTPUT. The second thread waits (if necessary) for the new value to be
available by calling JTGET with the same token type.

Notice that when TGET returns, the specified tokens are removed from the pool.
However, negative token types will satisfy an infinite number of requests for their
positive equivalents.

The system is designed to cater for more complex forms of synchronisation. For exam-
ple, a semaphore to control a number of resources can be implemented by keeping
that number of tokens in the pool. Each thread will take a token while processing,
and return it to the pool when it has finished.

A second complex example is that of a latch which holds back a number of threads
until the coast is clear. At a signal from another thread, the latch is opened so that all
of the threads are released. The latch may (or may not) then be closed again to hold
up subsequently arriving threads. A practical example of a latch is a ferry terminal.

56 Dyalog APL/W Programmer's Guide & Language Reference

Semaphore Example

A semaphore to control a number of resources can be implemented by keeping that
number of tokens in the pool. Each thread will take a token while processing, and
return it to the pool when it has finished.

For example, if we want to restrict the number of threads that can have sockets open
at any one time.

sock<«99 A socket-token
any +ive number will do).
OTPUT 5/sock A add 5 socket-tokens to
pool.

V sock_open

[1] :If sock=[TGET sock A grap a socket token

[.] .o A do stuff.

[.] OTPUT sock A release socket token
[.] :Else

[.] error'sockets off' A sockets switched off by

retract (see below).
[.] :EndIf
\'4

0 OTPUT Otreq Otnums A retract socket "service"
with 0 value.

Chapter 1: Introduction 57

Latch Example

A latch holds back a number of threads until the coast is clear. At a signal from
another thread, the latch is opened so that all of the threads are released. The latch
may (or may not) then be closed again to hold up subsequently arriving threads.

A visual example of a latch might be a ferry terminal, where cars accumulate in the
queue until the ferry arrives. The barrier is then opened and all (up to a maximum
number) of the cars are allowed through it and on to the ferry. When the last car is
through, the barrier is re-closed.

tkt<é A 6-token: ferry
ticket.

vV car ...
[1] OTGET tkt A await ferry.
[2] een

v ferry

[1] arrives in port

[2] OTPUT(t,/0Otreq Otnums)ntkt A ferry tickets for
all.

[3]

Note that it is easy to modify this example to provide a maximum number of ferry
places per trip by inserting max_p lacest between JTPUT and its argument. If
fewer cars than the ferry capacity are waiting, the 1 will fill with trailing Os. This will
not cause problems because zero tokens are ignored.

Let us replace the car ferry with a new road bridge. Once the bridge is ready for traf-
fic, the barrier could be opened permanently by putting a negative ticket in the pool.

OTPUT -tkt A open ferry barrier permananently.
Cars could choose to take the last ferry if there are places:

V car ...
[1] :Select OTGET tkt
[2] :Case tkt ¢ take the last ferry.
[3] :Case -tkt o ferry full: take the new bridge.
[4] :End

The above : Se lect works because by default, JTPUT -tkt puts a value of-tkt
into the token.

58 Dyalog APL/W Programmer's Guide & Language Reference

Debugging Threads

If a thread sustains an untrapped error, its execution is suspended in the normal way.
Ifthe Pause on Error option (see User Guide) is set, all other threads are paused. If
Pause on Error option (see User Guide) is not set, other threads will continue run-
ning and it is possible for another thread to encounter an error and suspend.

Using the facilities provided by the Tracer and the Threads Tool (see User Guide) it
is possible to interrupt (suspend) and restart individual threads, and to pause and
resume individual threads, so any thread may be in one of three states - running, sus-
pended or paused.

The Tracer and the Session may be connected with any suspended thread and you
can switch the attention of the Session and the Tracer between suspended threads
using) TID orby clicking on the appropriate tab in the Tracer. At this point, you
may:

e Examine and modify local variables for the currently suspended thread.
e Trace and edit functions in the current thread.

e Cut back the stack in the currently suspended thread.

e Restart execution.

e Start new threads

The error message from a thread other than the base is prefixed with its thread
number:

260:DOMAIN ERROR

Div[2] rslt<numzdiv
A

State indicator displays:) SI and) SINL have been extended to show threads’ tree-
like calling structure.

)SI
#.Calc[1]
&5
. #.DivSub[1]
&7
#.DivSub[1]
&6
#.Div[2]x
&L
#.Sub[3]
#.Main[4]

Here, Main has called Sub, which has spawned threads 4 and 5 with functions: Di v
and Cal c. Function D1 v, after spawning Di vSub in each of threads 6 and 7, have
been suspended at line [2].

Chapter 1: Introduction 59

Removing stack frames using Quit from the Tracer or > from the session affects only
the current thread. When the final stack frame in a thread (other than the base thread)
is removed, the thread is expunged.

JRESET removes all but the base thread.
Note the distinction between a suspended thread and a paused thread.

A suspended thread is stopped at the beginning of a line in a defined function or oper-
ator. It may be connected to the Session so that expressions executed in the Session
do so in the context of that thread. It may be restarted by executing > i ne (typ-
ically, ~[JLC).

A paused thread is an inactive thread that is currently being ignored by the thread
scheduler. A paused thread may be paused within a call to [JDQ, a call on an external
function, at the beginning of a line, or indeed at any of the thread-switching points
described earlier in this chapter.

A paused thread may be resumed only by the action of a menu item or button. A
paused thread resumes only in the sense that it ceases to be ignored by the thread
scheduler and will therefore be switched back to at some point in the future. It does
not actually continue executing until the switch occurs.

60 Dyalog APL/W Programmer's Guide & Language Reference

External Variables

An external variable is a variable whose contents (value) reside not in the workspace,
butin a file. An external variable is associated with a file by the system function
[XT. Ifat the time of association the file exists, the external variable assumes its
value from the contents of the file. Ifthe file does not exist, the external variable is
defined but a VALUE ERROR occurs if'it is referenced before assignment. Assign-
ment of an array to the external variable or to an indexed element of the external var-
iable has the effect of updating the file. The value of the external variable or the
value of indexed elements of the external variable is made available in the work-
space when the external variable occurs in an expression. No special restrictions are
placed on the usage of external variables.

Normally, the files associated with external variables remain permanent in that they
survive the APL session or the erasing of the external variable from the workspace.
External variables may be accessed concurrently by several users, or by different
nodes on a network, provided that the appropriate file access controls are

established. Multi-user access to an external variable may be controlled with the sys-
tem function JF HOLD between co-operating tasks.

Refer to the sections describing the system functions OXT and [0F HOLD in Chapter 6
for further details.

Examples
"ARRAY' [OXT 'v'
V<110
V[2] + 5
gex'v'
"ARRAY' [OXT 'F'

F
123456789 10

Chapter 1: Introduction 61

Component Files

A component file is a data file maintained by Dyalog APL. It contains a series of
APL arrays known as components which are accessed by reference to their relative
positions or component number within the file. A set of system functions is pro-
vided to perform a range of file operations. (See "Component Files" on page 382.)
These provide facilities to create or delete files, and to read and write components.
Facilities are also provided for multi-user access including the capability to deter-
mine who may do what, and file locking for concurrent updates. (See User Guide.)

Auxiliary Processors

Auxiliary Processors (APs) are non-APL programs which provide Dyalog APL users
with additional facilities. They run as separate tasks, and communicate with the Dya-
log APL interpreter through pipes (UNIX) or via an area of memory (Windows). Typ-
ically, APs are used where speed of execution is critical, such as in screen
management software, or for utility libraries. Auxiliary Processors may be written in
any compiled language, although 'C' is preferred and is directly supported.

When an Auxiliary Processor is invoked from Dyalog APL, one or more external
Sfunctions are fixed in the active workspace. Each external function behaves as ifit
was a locked defined function, but is in effect an entry point into the Auxiliary
Processor. An external function occupies only a negligible amount of workspace.
(See User Guide.)

Migration Level

OML determines the degree of migration of the Dyalog APL language towards IBM's
APL2. Unless otherwise stated, the manual assumes [JML has a value of 0.

62 Dyalog APL/W Programmer's Guide & Language Reference

Key to Notation

The following definitions and conventions apply throughout this manual:

f A function, or an operator's left argument when a function.

A function, or an operator's right argument when a function.

An operator's left argument when an array.

An operator's right argument when an array.

The left argument of a function.

< | XxX|m]| >» (@

The right argument of a function.

R The explicit result of a function.

[K] |Axis specification.

[I] |Index specification.

{X} |The left argument of a function is optional.

{R} |The function may or may not return a result, or the result may be
« suppressed.

function may refer to a primitive function, a system function, a defined (canonical,
dynamic or assigned) function or a derived (from an operator) function.

63

Chapter 2:

Defined Functions & Operators

A defined function is a program that takes 0, 1, or 2 arrays as arguments and may
produce an array as a result. A defined operator is a program that takes 1 or 2 func-
tions or arrays (known as operands) and produces a derived function as a result. To
simplify the text, the term operation is used within this chapter to mean function or
operator.

Canonical Representation

Operations may be defined with the system function F X (Fix) or by using the editor
within definition mode. Applying [JCR to the character array representing the name
of an already established operation will produce its canonical representation. A
defined operation is composed of lines. The first line (line 0) is called the operation
HEADER. Remaining lines are APL statements, called the BODY.

The operation header consists of the following parts:

1. its model syntactical form,
2. an optional list of local names, each preceded by a semi-colon (;) character,
3. an optional comment, preceded by the symbol fA.

Only the model is required. If local names and comments are included, they must
appear in the prescribed order.

Dyalog APL/W Programmer's Guide & Language Reference

Model Syntax

The model for the defined operation identifies the name of the operation, its valence,
and whether or not an explicit result may be returned. Valence is the number of
explicit arguments or operands, either 0, 1 or 2; whence the operation is termed
NILADIC, MONADIC or DYADIC respectively. Only a defined function may be
niladic. There is no relationship between the valence of a defined operator, and the
valence of the derived function which it produces. Defined functions and derived
functions produced by defined operators may be ambivalent, i.e. may be executed
monadically with one argument, or dyadically with two. An ambivalent operation is
identified in its model by enclosing the left argument in braces.

The value of a result-returning function or derived function may be suppressed in
execution if not explicitly used or assigned by enclosing the result in its model
within braces. Such a suppressed result is termed SHY .

The tables below show all possible models for defined functions and operators respec-
tively.

Defined Functions

Result Niladic |[Monadic Dyadic Ambivalent
None f fy X fy {X} £ Y
Explicit R<f Ref Y ReX f Y Re{X} f Y
Suppressed {R}«f {R}«f Y {R}«X f Y {R}«{X} f Y

Note:The right argument Y and/or the result R may be represented by a single name,
or as a blank-delimited list of names surrounded by parentheses. For further details,
see "Namelists" on page 68.

Derived Functions produced by Monadic Operator

Result Monadic Dyadic Ambivalent

None (A op)Y X(A op)Y {X}(A op)Y
Explicit R<(A op)Y R<X(A op)Y R<{X}(A op)Y
Suppressed |{R}<«(A op)Y [{R}<X(A op)Y |{R}«{X}(A op)Y

Derived Functions produced by Dyadic Operator

Result Monadic Dyadic Ambivalent

None (A op B)Y X(A op B)Y {X}(A op B)Y

Chapter 2: Defined Functions & Operators 65

Explicit |R«(A op B)Y

R<X(A op B)Y

R«{X}(A op B)Y

Suppressed [{R}«(A op B)Y

{R}«<X(A op B)
Y

{R}<{X}(A op B)Y

Statements

A statement is a line of characters understood by APL. It may be composed of:

1.

4.

MENT (which is preceded by a colon), or both,

adjacent expressions),

an EXPRESSION (see "Expressions" on page 17),
a SEPARATOR (consisting of the diamond character ¢ which must separate

a LABEL (which must be followed by a colon :), ora CONTROL STATE-

a COMMENT (which must start with the character f).

Each of the four parts is optional, but if present they must occur in the given order
except that successive expressions must be separated by ¢. Any characters occurring
to the right of the first comment symbol () that is not within quotes is a comment.

Comments are not executed by APL. Expressions in a line separated by ¢ are taken in
left-to-right order as they occur in the line. For output display purposes, each sep-
arated expression is treated as a separate statement.

MULT: 5x10 ¢ 2x4 a MULTIPLICATION

Examples
5x10
50
MULT: 5x10
50
MULT: 5x10 ¢ 2x4
50
8
50

8

66 Dyalog APL/W Programmer's Guide & Language Reference

Global & Local Names

The following names, if present, are local to the defined operation:

1. the result,

2. the argument(s) and operand(s),

3. additional names in the header line following the model, each name pre-
ceded by a semi-colon character,

4. labels,

5. the argument list of the system function JSHADOW when executed,

6. a name assigned within a Dynamic Function.

All names in a defined operation must be valid APL names. The same name may be
repeated in the header line, including the operation name (whence the name is local-
ised). Normally, the operation name is not a local name.

The same name may not be given to both arguments or operands of a dyadic oper-
ation. The name of a label may be the same as a name in the header line. More than
one label may have the same name. When the operation is executed, local names in
the header line after the model are initially undefined; labels are assigned the values
of line numbers on which they occur, taken in order from the last line to the first; the
result (if any) is initially undefined.

In the case of a defined function, the left argument (if any) takes the value of the array
to the left of the function when called; and the right argument (if any) takes the value
of'the array to the right of the function when called. In the case of a defined operator,
the left operand takes the value of the function or array to the left of the operator
when called; and the right operand (if any) takes the value of the function or array to
the right of the operator when called.

During execution, a local name temporarily excludes from use an object of the same
name with an active definition. This is known as LOCALISATION or SHAD-
OWING. A value or meaning given to a local name will persist only for the duration
of'execution of the defined operation (including any time whilst the operation is
halted). A name which is not local to the operation is said to be GLOBAL. A global
name could itself be local to a pendent operation. A global name can be made local
to a defined operation during execution by use of the system function JSHADOW. An
object is said to be VISIBLE ifthere is a definition associated with its name in the
active environment.

Chapter 2: Defined Functions & Operators 67

Examples
A<l
vV F
[1] A<10
[2] v
F A <A> NOT LOCALISED IN <F>, GLOBAL VALUE REPLACED
A
10
A<t
JERASE F
vV F3A
[1] A<10
[2] v
F A <A> LOCALISED IN <F>, GLOBAL VALUE RETAINED
A
1

Any statement line in the body of a defined operation may begin with a LABEL. A
label is followed by a colon (:). A label is a constant whose value is the number of
the line in the operation defined by system function [JF X or on closing definition
mode.

The value of a label is available on entering an operation when executed, and it may
be used but not altered in any expression.

Example

OVR'PLUS'
v R<{A} PLUS B
[1] -+DYADIC p=~2=[NC'A' o R<«B o =END
[2] DYADIC: R<«A+B
[3] END:
\'4

1 OSTOP'PLUS'

2 PLUS 2
PLUS[1]

DYADIC
2

END

68

Dyalog APL/W Programmer's Guide & Language Reference

Namelists

The right argument and the result of a function may be specified in the function
header by a single name or by a Namelist. In this context, a Namelist is a blank-delim-
ited list of names surrounded by a single set of parentheses.

Names specified in a Namelist are automatically local to the function; there is no
need to localise them explicitly using semi-colons.

Ifthe right argument of a function is declared as a Namelist, the function will only
accept a right argument that is a vector whose length is the same as the number of
names in the Namelist. Calling the function with any other argument will result in a
LENGTH ERROR in the calling statement. Otherwise, the elements of the argument
are assigned to the names in the Namelist in the specified order.

Example:
Vv IDN<Date2IDN(Year Month Day)
[1] 'Year is ',sYear
[2] ‘Month is ',sMonth
[3] 'Day is ',sDay
(4] ...
\'4

Date2IDN 2004 4 30
Year is 2004
Month is 4
Day is 30

Date2IDN 2004 4
LENGTH ERROR
Date2IDN 2004 4

A

Note that if you specify a single name in the Namelist, the function may be called
only with a 1-element vector or a scalar right argument.

If the result of a function is declared as a Namelist, the values of the names will auto-
matically be stranded together in the specified order and returned as the result of the
function when the function terminates.

Example:

V (Year Month Day)<«Birthday age
[1] Year«1949+age
[2] Month<y
[3] Day<«30
\'
Birthday 50
1999 4 30

Chapter 2: Defined Functions & Operators 69

Function Declaration Statements

Function Declaration statements are used to identify the characteristics of a function
in some way.

The following declarative statements are provided.

:Access
:Attribute
:Implements
:Signature

With one exception, these statements are not executable statements and may theo-

retically appear anywhere in the body of the function. However, it is recommended
that you place them at the beginning before any executable statements. The excep-
tion is:

:Implements Constructor <[:Base exprl]>

In addition to being declarative (declaring the function to be a Constructor) this state-
ment also executes the Constructor in the Base Class whether or not it includes :Base
expr. Its position in the code is therefore significant.

70 Dyalog APL/W Programmer's Guide & Language Reference

Access Statement t:Access

:Access <Private|Public><Instance]|Shared>
:Access <WebMethod>

The : Access statement is used to specify characteristics for functions that rep-
resent Methods in classes (see "Methods" on page 166). It is also applicable to
Classes and Properties.

Element Description

Specifies whether or not the method is accessible from
Private|Public |[outside the Class or an Instance of the Class. The
default is Private.

Specifies whether the method runs in the Class or

Instance|Shared Instance. The default is Instance.

Specifies that the method is exported as a web
WebMethod method. This applies only to a Class that implements
a Web Service.

Applies only to an Instance Method and specifies that
Overridable the Method may be overridden by a Method in a
higher Class. See below.

Applies only to an Instance Method and specifies that
Override the Method overrides the corresponding Overridable
Method defined in the Base Class. See below

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains avail-
able in the Base Class and is invoked by a reference to it from within the Base Class.

However, a Method declared as being Overridab l e is replaced in-situ (i.e. within
its own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see "Superseding
Base Class Methods" on page 169.

WebMethod

Note that : Access WebMethod isequivalent to:
tAccess Public

tAttribute System.Web.Services.WebMethodAttribute

Chapter 2: Defined Functions & Operators 7

Attribute Statement

t:Attribute

:Attribute <Name> [ConstructorArgs]

The : Attribute statement is used to attach .Net Attributes to a Method (or Class).

Attributes are descriptive tags that provide additional information about pro-
gramming elements. Attributes are not used by Dyalog APL but other applications
can refer to the extra information in attributes to determine how these items can be
used. Attributes are saved with the metadata of Dyalog APL NET assemblies.

Element

Description

Name

The name of a .Net attribute

ConstructorArgs |[Optional arguments for the Attribute constructor

Examples

tAttribute ObsoleteAttribute
:Attribute ObsoleteAttribute 'Don''t use' 1

Implements Statement

:Implements

The : Implements statement identifies the function to be one of the following

types.

:Implements Constructor <[:Base exprl]>
:Implements Destructor

:Implements Method <InterfaceName.MethodName>
:Implements Trigger <namel><,name2,name3,...>

Element

Description

Constructor

Specifies that the function is a Class Constructor.

:Base expr

Specifies that the Base Constructor be called with the result
of the expression expr as its argument.

Destructor

Specifies that the function is a Class Destructor.

Method

Specifies that the function implements the Method
MethodName whose syntax is specified by Interface
InterfaceName.

Trigger

Identifies the function as a Trigger Function which is
activated by changes to variable namel, name2, etc.

72 Dyalog APL/W Programmer's Guide & Language Reference

Signature Statement :Signature

:Signature <rslttype«><name><argltype arginame>,...

This statement identifies the name and signature by which a function is exported as a
method to be called from outside Dyalog APL. Several :Signature statements may be
specified to allow the method to be called with different arguments and/or to specify
a different result type.

Element Description

rslttype Specifies the data type for the result of the method

name Specifies the name of the exported method.

argntype Specifies the data type of the nth parameter

argnname Specifies the name of the nth parameter

Argument and result data types are identified by the names of .Net Types which are
defined in the Net Assemblies specified by JUSING orby a : USING statement.

Examples

In the following examples, it is assumed that the .Net Search Path (defined by
:Using orJUSING includes 'System'.

The following statement specifies that the function is exported as a method named
Format which takes a single parameter of type System.Object named Array.
The data type of the result of the method is an array (vector) of type
System.String.

:Signature String[J]«Format Object Array

The next statement specifies that the function is exported as a method named
Catenate whose result is of type System.Object and which takes 3 parameters.
The first parameter is of type System.Double and is named Dimension. The sec-
ond is of type System.Object and is named Argl. The third is of type
System.Object and is named Arg2.

:Signature Object<«Catenate Double Dimension,...
...0bject Argl, Object Arg2

Chapter 2: Defined Functions & Operators 73

The next statement specifies that the function is exported as a method named
IndexGen whose result is an array of type System. Int32 and which takes 2
parameters. The first parameter is of type System. Int32 and is named N. The sec-
ond is of type System. Int32 and isnamed Origin.

:Signature Int32[]«IndexGen Int32 N, Int32 Origin

The next block of statements specifies that the function is exported as a method
named Mix. The method has 4 different signatures; i.e. it may be called with 4 dif-
ferent parameter/result combinations.

:Signature Int32[,]«Mix Double Dimension,
.Int32[] Vecl, Int32[] Vec2

:Signature Int32[,]«Mix Double Dimension,...
Int32[] Vect, Int32[] Vec2, Int32 Vec3

:Signature Double[,]«Mix Double Dimension,
Double[] Vecl, Double[] Vec2

:Signature Doublel[,]«M1x Double Dimension, ..
Double[] Vecl, Double[] Vec2, DoubLe[]

Vec3

74 Dyalog APL/W Programmer's Guide & Language Reference

Control Structures

Control structures provide a means to control the flow of execution in your APL pro-
grams.

Traditionally, lines of APL code are executed one by one from top to bottom and the
only way to alter the flow of execution is using the branch arrow. So how do you
handle logical operations of the form “If this, do that; otherwise do the other”?

In APL this is often not a problem because many logical operations are easily per-
formed using the standard array handling facilities that are absent in other
languages. For example, the expression:

STATUS«(1+AGE<16)>"'Adult' 'Minor'

sets STATUS to 'Adult' if AGE is 16 or more; otherwise sets STATUS to
‘Minor'.

Things become trickier if, depending upon some condition, you wish to execute one
set of code instead of another, especially when the code fragments cannot con-
veniently be packaged as functions. Nevertheless, careful use of array logic, defined
operators, the execute primitive function and the branch arrow can produce high qual-
ity maintainable and comprehensible APL systems.

Control structures provide an additional mechanism for handling logical operations
and decisions. Apart from providing greater affinity with more traditional lan-
guages, Control structures may enhance comprehension and reduce programming
errors, especially when the logic is complex. Control structures are not, however, a
replacement for the standard logical array operations that are so much a part of the
APL language.

Control Structures are blocks of code in which the execution of APL statements fol-
lows certain rules and conditions. Control structures are implemented using a set of
control words that all start with the colon symbol (:). Control Words are case-insen-
sitive.

There are eight different types of control structures defined by the control words,

:If, :While, :Repeat, :For, :Select, :With, :Trapand :Hold. Each
one of these control words may occur only at the beginning of an APL statement and
indicates the start of a particular type of control structure.

Within a control structure, certain other control words are used as qualifiers. These
are tElse,:ElselIf, :AndIf, :0OrIf, :Until, :Caseand :Caselist.

Chapter 2: Defined Functions & Operators 75

A third set of control words is used to identify the end of a particular control
structure. These are : EndIf, :EndWhile, :EndRepeat, :EndFor,

:EndSelect, :EndWith, :EndTrap and :EndHold. Although formally dis-
tinct, these control words may all be abbreviated to : End.

Finally, the : GoTo, :Return, :Leave and : Continue control words may be
used to conditionally alter the flow of execution within a control structure.

Control words, including qualifiers such as : Else and :E l seIf, may occur only at
the beginning of a line or expression in a diamond-separated statement. The only
exceptions are : In and : InEach which must appear on the same line within a

: For expression.

Key to Notation

The following notation is used to describe Control Structures within this section:

aexp |an expression returning an array,

bexp [an expression returning a single Boolean value (0 or 1),

var loop variable used by :For control structure,

0 or more lines of APL code, including other (nested) control

code
structures,
either one or more : AndIf statements, or one or more :0OrIf
statements.
| <====mmmme - | <====mmmme -
andor | |
code code

A

76 Dyalog APL/W Programmer's Guide & Language Reference

Access Statement t:Access

The : Access statement may be used to define the characteristics of a Class, the char-
acteristics of a defined function (Method) in a Class, or the characteristics of other
Class members.

:Access Statement in a Function/Method.

:Access Statement in a Class or in other members of'a Class.

Chapter 2: Defined Functions & Operators 77

Attribute Statement tAttribute

The : Attribute statement is used to attach .Net Attributes to a Method or a Class.
:Attribute Statement for a Class.

:Attribute statement for a Method.

78

Dyalog APL/W Programmer's Guide & Language Reference

If Statement :If bexp

The simplest : If control structure is a single condition of the form:

[1] :If AGE<21
[2] expr 1
[3] expr 2
[5] tEndIf

If the test condition (in this case AGE <21) is true, the statements between the : I f
and the : EndIf will be executed. Ifthe condition is false, none of these statements
will be run and execution resumes after the : EndIf. Note that the test condition to
the right of : I f must return a single element Boolean value 1 (true) or O (false).

: If control structures may be considerably more complex. For example, the fol-
lowing code will execute the statements on lines [2-3] if AGE<21 is 1 (true), or
alternatively, the statement on line [6] if AGE<21 is O (false).

[1] :If AGE<21

[2] expr 1
[3] expr 2
[5] :Else

[6] expr 3

[7] :EndIf

Instead of a single condition, it is possible to have multiple conditions using the
:ElseIf control word. Forexample:

[1] :If WINEAGE<5

[2] 'Too young to drink'

[5] tElselIf WINEAGE<10

[6] "Just Right'

[7] :ElselIf WINEAGE<15

[8] 'A bit past its prime'
[9] :Else

[10] 'Definitely over the hill'

[11] :EndIf

Notice that APL executes the expression(s) associated with the first condition that is
true or those following the : E L se if none of the conditions are true.

Chapter 2: Defined Functions & Operators 79

The : AndIf and :OrIf control words may be used to define a block of conditions
and so refine the logic still further. You may qualify an : If oran :ElseIf with
one ormore : AndIf statements or with one ormore : Or If statements. You may
not however mix :AndIf and :OrIf in the same conditional block. For example:

[1] :If WINE.NAME='Chateau Lafitte'
[2] :AndIf WINE.YEARe€1962 1967 1970
[3] 'The greatest?'

[4] :ElseIf WINE.NAME='Chateau Latour'
[5] :0rif WINE.NAME='Chateau Margaux'
[6] :0rif WINE.PRICE>100

[7] ‘Almost as good'
[8] :Else
[9] 'Everyday stuff'
[10] :EndIf

Please note that in a : I f control structure, the conditions associated with each of the
condition blocks are executed in order until an entire condition block evaluates to
true. At that point, the APL statements following this condition block are executed.
None of the conditions associated with any other condition block are executed. Fur-
thermore, ifan : AndIf condition yields O (false), it means that the entire block must
evaluate to false so the system moves immediately on to the next block without
executing the other conditions following the failing : AndIf. Likewise, ifan
:0OrIf condition yields 1 (true), the entire block is at that point deemed to yield
true and none of the following :OrIf conditions in the same block are executed.

80 Dyalog APL/W Programmer's Guide & Language Reference

:If Statement
I
:If bexp
|
I I
| andor
| |
| <------ !
I
code
|
|<==mm -
I
| | |
| :Else :ElseIf bexp
I I I
| | (mmmmmmn :
| | | |
| | | andor
I I I I
| | | <--mm- !
| | |
| code code
I I I
| ' N
|

Chapter 2: Defined Functions & Operators 81

While Statement :While bexp

The simplest :Whi le loop is:

[1] I<0

[2] :While I<100
[3] expri
[4] expr2
[5] I<I+1

[6] :EndWhi le

Unless expri or expr2 alter the value of I, the above code will execute lines [3-
4] 100 times. This loop has a single condition; the value of I. The purpose of the

:EndWhi Le statement is solely to mark the end of the iteration. It acts the same as
if it were a branch statement, branching back to the :Whi Le line.

An alternative way to terminate a :Whi le structure isto use a : Unt i L statement.
This allows you to add a second condition. The following example reads a native
file sequentially as 80-byte records until it finds one starting with the string
'Widget ' orreaches the end of'the file.

[1] I<0

[2] :While I<[NSIZE ~1

[3] REC<[INREAD ~1 82 80
(4] I«I+pREC

[5] :Until 'Widget'=6pREC

Instead of single conditions, the tests at the beginning and end of the loop may be
defined by more complex ones using : AndIf and :OrIf. Forexample:

[1] :While 100>j
[2] :AndIf 100>
[3] i j«foo i j
[4] :Until 100<i+j
[5] :0rIf i<0

[6] :0rIf j<O

In this example, there are complex conditions at both the start and the end of the
iteration. Each time around the loop, the system tests that both i and j are less than
orequal to 100. Ifeither test fails, the iteration stops. Then, after i and j have been
recalculated by f oo, the iteration stops if i+ j is equal to or greater than 100, or if
either i or j is negative.

82 Dyalog APL/W Programmer's Guide & Language Reference

‘While Statement

I
:While bexp

|
:End[While] :Until bexp

Chapter 2: Defined Functions & Operators 83

Repeat Statement :Repeat

The simplest type of :Repeat loop is as follows. This example executes lines [3-
5] 100 times. Notice that as there is no conditional test at the beginning of a
:Repeat structure, its code statements are executed at least once.

[1] I<0

[2] :Repeat
[3] expri
[4] expr2
[5] I<I+1

[6] :Until I=100

You can have multiple conditional tests at the end of the loop by adding : AndIf or

:0rIf expressions. The following example will read data from a native file as 80-
character records until it reaches one beginning with the text string 'Widget ' or
reaches the end of the file.

[1] :Repeat

[2] REC<[JNREAD ~1 82 80
[3] :Until 'Widget'=6pREC
[4] :0rIf 0=pREC

A :Repeat structure may be terminated by an : EndRepeat (or : End) statement
in place of a conditional expression. Ifso, your code must explicitly jump out of the
loop using a : Leave statement or by branching. For example:

[1] :Repeat

[2] REC<[INREAD ~1 82 80
[3] :If 0=pREC

[4] :0rIf 'Widget'=6pREC
[5] :Leave

[6] :EndIf

[7] :EndRepeat

84 Dyalog APL/W Programmer's Guide & Language Reference

:Repeat Statement

I
:Repeat

:End[Repeat] :Until bexp

Chapter 2: Defined Functions & Operators 85

For Statement :For var :In[Each] aexp

Single Control Variable

The : For loop is used to execute a block of code for a series of values of a particular
control variable. For example, the following would execute lines [2-3] suc-
cessively for values of I from 3 to 5 inclusive:

[1] :For I :In 3 4 5
[2] exprl I

[3] expr2 I

[4] :EndFor

The way a : For loop operates is as follows. On encountering the : For, the expres-
sion to the right of : In is evaluated and the result stored. This is the control array.
The control variable, named to the right of the : For, is then assigned the first value
in the control array, and the code between : For and : EndFor is executed. On
encountering the : EndF or, the control variable is assigned the next value of the
control array and execution of the code is performed again, starting at the first line
afterthe : For. This process is repeated for each value in the control array.

Note that if the control array is empty, the code in the : F or structure is not
executed. Note too that the control array may be any rank and shape, but that its ele-
ments are assigned to the control variable in ravel order.

The control array may contain any type of data. For example, the following code
resizes (and compacts) all your component files

[1] :For FILE :In (40FLIB '')~"" "'

[2] FILE OFTIE 1
[3] OFRESIZE 1
[4] OFUNTIE 1

[5] :EndFor

You may also nest : For loops. Forexample, the following expression finds the
timestamp of the most recently updated component in all your component files.

[1] TS<«0

[2] :For FILE :In (J0OFLIB '')~""' '

[3] FILE OFTIE 1

[4] START END<«2p[FSIZE 1

[5] :For COMP :In (START-1)Jt1END-1
[6] TS« 110FREAD FILE COMP
[7] :EndFor

[8] [OFUNTIE 1

[9] :EndFor

86 Dyalog APL/W Programmer's Guide & Language Reference

Multiple Control Variables

The : For control structure can also take multiple variables. This has the effect of
doing a strand assignment each time around the loop.

Forexample :For a b ¢ :in (1 2 3)(4 5 6),setsa b c«1 2 3, firsttime
around the loopand a b c«4 5 6,the second time.

Another exampleis :For i j :In 1pMatrix,whichsetsi and j to each row
and column index ofMatrix.

:InEach Control Word

:For var ... :InEach value
In a : For control structure, the keyword : InEach is an alternative to : In.

For a single control variable, the effect of the keywords is identical but for multiple
control variables the values vector is inverted.

The distinction is best illustrated by the following equivalent examples:

:For a b c :In (1 2 3)(3 4 5)(5 6 7)(7 8 9)
J<a b ¢
:EndFor

:For a b ¢ :InEach (1 35 7)(2 4+ 6 8)(3 5 7 9)
J<a b ¢
:EndFor

In each case, the output from the loop is:

~NOoOTw -~
ooNFN
ONOTW

Notice that in the second case, the number of items in the values vector is the same as
the number of control variables. A more typical example might be.

:For a b ¢ :InEach avec bvec cvec

:EndFor
Here, each time around the loop, control variable a is set to the next item of avec, b
to the next item of bvec and c to the next item of cvec.

Chapter 2: Defined Functions & Operators 87

:For Statement

:For var :In[Each] aexp

code

|
:End[For]
|

Select Statement :Select aexp

A :Select structure is used to execute alternative blocks of code depending upon
the value of an array. For example, the following displays 'I is 1' ifthe variable
I hasthevaluel, 'I is 2'ifitis2,or'I is neither 1 nor 2'ifithas
some other value.

[1] :Select I
[2] :Case 1

[3] 'T is 1'

[4] :Case 2

[5] 'T is 2'

[6] :Else

[7] 'IT is neither 1 nor 2'

[8] :EndSelect

In this case, the system compares the value of the array expression to the right of the

: Se lect statement with each of the expressions to the right of the : Case state-
ments and executes the block of code following the one that matches. Ifnone match,
it executes the code following the : E Ll se (which is optional). Note that com-
parisons are performed using the = primitive function, so the arrays must match
exactly. Note also that not all ofthe : Case expressions are necessarily evaluated
because the process stops as soon as a matching expression is found.

Instead ofa : Case statement, you may also use a :Casel ist statement. Ifso, the
enclose of the array expression to the right of : Se lect is tested for membership of
the array expression to the right of the : Casel i st using the € primitive function.

Note also that any code placed between the : Se lect and the first : Case or
:Casel ist statements are unreachable; future versions of Dyalog APL may gen-
erate an error when attempting to fix functions which include such code.

88

Dyalog APL/W Programmer's Guide & Language Reference

Example

[1]
[2]
[3]
[4]
[5]
6]
[7]
[8]
[9]
[10]
[11]
[12]

:Select 76 6
:Case 6 6

'Box Cars'

:Case 1 1

'Snake Eyes'

:Caselist 2p™ 16

'Pair’

:CaselList (16), $16

'Seven'

:Else

"Unlucky’

:EndSelect

:Select Statement

:Select aexp

A

:End[Select]

Chapter 2: Defined Functions & Operators 89

With Statement :With obj

:Wi th is a control structure that may be used to simplify a series of references to an
object or namespace. : Wi th changes into the specified namespace for the duration
of the control structure, and is terminated by : End[Wi th]. For example, you could
update several properties of a Grid object F . G as follows:

:With F.G
Values<«l4 3p0
RowTitles<«'North' 'South' 'East' 'West'
ColTitles«'Cakes' 'Buns' 'Biscuits'
:EndWith

:Withisanalogousto[JCS in the following senses:

e The namespace argument to :With is interpreted relative to the current
space.

e With the exception of those with name class 9, local names in the con-
taining defined function continue to be visible in the new space.

o Global references from within the :With control structure are to names in
the new space.

o Exiting the defined function from within a :With control structure causes
the space to revert to the one from which the function was called.

On leaving the : Wi th control structure, execution reverts to the original namespace.
Notice however that the interpreter does not detect branches (=) out of the control
structure. : Wi th control structures can be nested in the normal fashion:

[1] :With 'x' A Change to #.x
[2] :With 'y' A Change to #.x.y
[3] :With [OSE A Change to [JSE
[4] e A in [SE

[5] :EndWith A Back to #.x.y
[6] :EndWith A Back to #.x

[7] :EndWith A Back to #

:With Statement
[

:With namespace (ref or name)

code

[
:End[With]
|

90

Dyalog APL/W Programmer's Guide & Language Reference

Hold Statement :Hold tkn

Whenever more than one thread tries to access the same piece of data or shared
resource at the same time, you need some type of synchronisation to control access to
that data. This is provided by : Ho L d.

:Ho l d provides a mechanism to control thread entry into a critical section of code.
tkns must be a simple character vector or scalar, or a vector of character vectors.
tkns represents a set of ‘tokens’, all of which must be acquired before the thread can
continue into the control structure. : Ho l d is analogous to the component file system
OFHOLD.

Within the whole active workspace, a token with a particular value may be held only
once. If the hold succeeds, the current thread acquires the tokens and execution con-
tinues with the first phrase in the control structure. On exit from the structure, the
tokens are released for use by other threads. If the hold fails, because one or more of
the tokens is already in use:

1. Ifthere is no :E Lse clause in the control structure, execution of the thread
is blocked until the requested tokens become available.

2. Otherwise, acquisition of the tokens is abandoned and execution resumed
immediately at the first phrase in the : E Ll se clause.

tkns can be either a single token:

a
'Red’
"#.Util'

'Program Files'

... ora number of tokens:

‘red' 'green' 'blue'
‘doe' 'a' 'deer'

, 'abc'

0nt 9

Pre-processing removes trailing blanks from each token before comparison, so that,
for example, the following two statements are equivalent:

:Hold 'Red' 'Green'
:Hold 42 5p'Red Green'

Chapter 2: Defined Functions & Operators 91

Unlike (JFHOLD, a thread does not release all existing tokens before attempting to
acquire new ones. This enables the nesting of holds, which can be useful when mul-
tiple threads are concurrently updating parts of a complex data structure.

In the following example, a thread updates a critical structure in a child namespace,
and then updates a structure in its parent space. The holds will allow all ‘sibling’
namespaces to update concurrently, but will constrain updates to the parent structure
to be executed one at a time.

tHold Qcs'' A Hold child space
cee A Update child space
:Hold ##.0cs"'' A Hold parent space
e A Update Parent space
:EndHold
:EndHold

However, with the nesting of holds comes the possibility of a ‘deadlock’. For exam-
ple, consider the two threads:

Thread 1 Thread 2

:Hold 'red' :Hold 'green'
‘Hold ‘green' ‘Hold 'red'
:EndHold :EndHold

:EndHold :EndHold

In this case if both threads succeed in acquiring their first hold, they will both block
waiting for the other to release its token.

Ifthis deadlock situation is detected acquisition of the tokens is abandoned. Then:

1. Ifthere is an : E Ll se clause in the control structure, execution jumps to the

:Else clause.
2. Otherwise, APL issues an error (1008) DEADLOCK.

You can avoid deadlock by ensuring that threads always attempt to acquire tokens in
the same chronological order, and that threads never attempt to acquire tokens that
they already own.

Note that token acquisition for any particular : Ho L d is atomic, that is, either a/l of
the tokens or none of them are acquired. The following example cannot deadlock:

92 Dyalog APL/W Programmer's Guide & Language Reference

Thread 1 Thread 2
:Hold 'red'

- :Hold 'green' 'red'
:Hold 'green' cen
ce :EndHold
:EndHold
:EndHold

Examples

:Ho l d could be used for example, during the update of a complex data structure that
might take several lines of code. In this case, an appropriate value for the token
would be the name of the data structure variable itself, although this is just a pro-
gramming convention: the interpreter does not associate the token value with the
data variable.

:Hold'Struct'

cen A Update Struct
Struct « ...

:EndHold

The next example guarantees exclusive use of the current namespace:

:Hold QcCS'' A Hold current space
:EndHold

The following example shows code that holds two positions in a vector while the
contents are exchanged.

:Hold 3 'to fm
:If >/vec[fm to]
vec[fm tol«vec[to fm]
:End
:End

Between obtaining the next available file tie number and using it:

:Hold '[FNUMS'
tie<1+[/0,0FNUMS
fname [OFSTIE tie

:End

The above hold is not necessary if the code is combined into a single line:
fname OFSTIE tie«1+[/0,0FNUMS
or,

tie«fname [OFSTIE O

Chapter 2: Defined Functions & Operators 93

Note that : Ho L d, like its component file system counterpart JF HOLD, is a device to
enable co-operating threads to synchronise their operation.

:Ho L d does not prevent threads from updating the same data structures concurrently,
it prevents threads only from : Ho | d-ing the same tokens.

:Hold Statement

|
:Hold token(s)

:End[Hold]
I

94 Dyalog APL/W Programmer's Guide & Language Reference

Trap Statement :Trap ecode

: Trap is an error trapping mechanism that can be used in conjunction with, or as an
alternative to, the TRAP system variable. It is equivalent to APL2’s [JE A, except
that the code to be executed is not restricted to a single expression and is not con-
tained within quotes (and so is slightly more efficient).

ecode is an integer scalar or vector containing the list of event codes which are to
be handled during execution of the segment of code between the : Trap and : End
[Trap] statements. Note that event codes 0 and 1000 are wildcards that means any
event code in a given range. See Language Reference.

Operation

The segment of code immediately following the : Trap keyword is executed. On
completion of this segment, if no error occurs, control passes to the code following
:End[Trap].

If an error occurs which is not specified by ecode, it is processed by outer : Traps,
OTRAPs, or by the default system processing in the normal fashion.

If an error occurs, whose event code matches ecode:

e If the error occurred within a sub-function, the system cuts the execution

stack back to the function containing the : Trap keyword. In this respect,
:Trap behaves like JTRAP with a 'C' qualifier.

e Ifthe :Trap segment contains a :Case[List] ecode statement whose
ecode matches the event code of the error that has occurred, execution con-
tinues from the statement following that :Case[List] ecode.

e Otherwise, if the : Trap segment contains a : E L se statement, execution
continues from the first statement following the : E l se statement.

e Otherwise, execution continues from the first statement following the

:End[Trap] and no error processing occurs.

Note that the error trapping is in effect only during execution of the initial code seg-
ment. When a trapped error occurs, further error trapping is immediately disabled (or
surrendered to outer level : Traps or JTRAPSs). In particular, the error trap is no
longer in effect during processing of : Case[List]’s argument or in the code fol-
lowing the :Case[List] or : Else statement. This avoids the situation some-
times encountered with JTRAP where an infinite ‘trap loop’ occurs.

Note that the statement : Trap € results in no errors being trapped.

Chapter 2: Defined Functions & Operators 95

Examples

v Lx
[1] :Trap 1000 A Cutback and exit on interrupt
[2] Main ...
[3] :EndTrap

v

vV ftie<Fcreate file A Create null component file
[1] :Trap 22 A Trap FILE NAME ERROR
[2] ftie«file [OFCREATE O A Try to create file.
[3] :Else
[4] ftie«file OFTIE O A Tie the file.
[5] file [OFERASE ftie A Drop the file.
[6] file OFCREATE ftie A Create new file.
[7] :EndTrap

v

vV Lx A Distinguish various cases

[1] :Trap 0 1000
[2] Main ...
[3] :Case 1002
[4] 'Interrupted ...'
[5] :CaselList 1 10 72 76
[6] ‘Not enough resources'
[7] :Caselist 17+120
[8] 'File System Problem'
[9] :Else
[10] 'Unexpected Error'
[11] :EndTrap
v

Note that : Traps can be nested:

V ntie«Ntie file A Tie native file
[1] :Trap 22 A Trap FILE NAME ERROR
[2] ntie<file [ONTIE O A Try to tie file
[3] :Else
[4] :Trap 22 A Trap FILE NAME ERROR
[5] ntie<(file,'.txt')ONTIE O A Try with .txt extn
[6] :Else
[7] ntie<file [ONCREATE 0 A Create null file.
[8] :EndTrap
[9] :EndTrap

96 Dyalog APL/W Programmer's Guide & Language Reference

:Trap Statement

:Trap <ecode>

code

|

R e .
| |
o - |
| | |
| :Else :Case[List] <ecode> |
code code		
< ______ ' N e el _ '		

tEnd[Trap]

I
Where ecode is a scalar or vector of [TRAP event codes (see " Trappable Event
Codes " on page 626).

Note that within the : Trap control structure, : Case is used for a single event code
and :Casel ist foravector of event codes.

Chapter 2: Defined Functions & Operators 97

GoTo Statement :GoTo aexp

A :GoTo statement is a direct alternative to - (branch) and causes execution to jump
to the line specified by the first element of aexp.

The following are equivalent. See "Branch:" on page 237 for further details.

»Exit
:GoTo Exit

>(N<I<«I+1)/End
:GoTo (N<I«I+1)/End

~1+[JLC
:GoTo 1+[LC

-10
:GoTo 10

Return Statement :Return

A :Return statement causes a function to terminate and has exactly the same
effect as ~0.

The :Return control word takes no argument.

A :Return statement may occur anywhere in a function or operator.

Leave Statement tLeave

A :Leave statement is used to explicitly terminate the execution of a block of state-
ments within a : For, :Repeat or :Whi L e control structure.

The : Leave control word takes no argument.

98 Dyalog APL/W Programmer's Guide & Language Reference

Continue Statement :Continue

A :Continue statement starts the next iteration of the immediately surrounding
:For, :Repeat or :Whi Le control loop.

When executed within a : For loop, the effect is to start the body of the loop with
the next value of the iteration variable.

When executed within a :Repeat or :Whi le loop, if there is a trailing test that test
is executed and, if the result is true, the loop is terminated. Otherwise the leading
test is executed in the normal fashion.

Section Statement :Section

Functions and scripted objects (classes, namespaces etc.) can be subdivided into Sec-
tions with :Section and :EndSection statements. Both statements may be fol-
lowed by an optional and arbitrary name or description. The purpose is to split the
function up into sections that you can open and close in the Editor, thereby aiding
readability and code management. Sections have no effect on the execution of the
code, but must follow the nesting rules of other control structures.

For further information, See User Guide.

Chapter 2: Defined Functions & Operators 99

Triggers

Triggers provide the ability to have a function called automatically whenever a var-
iable ora Field is assigned. Triggers are actioned by all forms of assignment («), but
only by assignment.

Triggers are designed to allow a class to perform some action when a field is mod-
ified — without having to turn the field into a property and use the property setter
function to achieve this. Avoiding the use of a property allows the full use of the
APL language to manipulate data in a field, without having to copy field data in and
out of the class through get and set functions.

Triggers can also be applied to variables outside a class, and there will be situations
where this is very useful. However, dynamically attaching and detaching a trigger
from a variable is a little tricky at present.

The function that is called when a variable or Field changes is referred to as the
Trigger Function. The name of a variable or Field which has an associated Trigger
Function is termed a Trigger.

A function is declared as aTrigger function by including the statement:
:Implements Trigger Namel,Name2,Name3,
where Name 1, Name2 etc are the Triggers.

When a Trigger function is invoked, it is passed an Instance of the internal Class
TriggerArguments. This Class has 3 Fields:

Member |Description

Name of the Trigger whose change in value has caused the

Name Trigger Function to be invoked.

NewValue | The newly assigned value of the Trigger

The previous value of the Trigger. If the Trigger was not
OldValue |previously defined, a reference to this Field causes a VALUE
ERROR.

A Trigger Function is called as soon as possible after the value of a Trigger was
assigned; typically by the end of the currently executing line of APL code. The pre-
cise timing is not guaranteed and may not be consistent because internal workspace
management operations can occur at any time.

Ifthe value of'a Trigger is changed more than once by a line of code, the Trigger
Function will be called at least once, but the number of times is not guaranteed.

100 Dyalog APL/W Programmer's Guide & Language Reference

A Trigger Function is not called when the Trigger is expunged.

Expunging a Trigger disconnects the name from the Trigger Function and the Trigger
Function will not be invoked when the Trigger is reassigned. The connection may be
re-established by re-fixing the Trigger Function.

A Trigger may have only a single Trigger Function. If the Trigger is named in more
than one Trigger Function, the Trigger Function that was last fixed will apply.

In general, it is inadvisable for a Trigger function to modify its own Trigger, as this
will potentially cause the Trigger to be invoked repeatedly and forever.

To associate a Trigger function with a local name, it is necessary to dynamically fix
the Trigger function in the function in which the Trigger is localised; for example:

v TRIG arg
[1] :Implements Trigger A
[2] cen
VvV TEST;A
[1] OFx OOR'TRIG'
[2] A<10
Example
The following function displays information when the value of variables A or B
changes.
vV TRIG arg
[1] :Implements Trigger A,B
[2] arg.Name'is now 'arg.NewValue
[3] :Trap 6 A VALUE ERROR
[4] arg.Name 'was ‘arg.OldValue
[5] :Else
[6] arg.Name' was [undefined]"'
[7] :EndTrap
v

Note that on the very first assignment to A, when the variable was previously unde-
fined,arg.0ldValueisa VALUE ERROR.

Chapter 2: Defined Functions & Operators 101

A<10

A is now 10

A was [undefined]
A+<10

A is now 20

A was 10

A<'Hello World'
A is now Hello World
A was 20

A[1]«c2 3p16
A is now 1 2 3 ello World

L 5 6
A was Hello World
B«dA
B 1is now 321 ello World
6 5 4
B was [undefined]

A<[JNEW MyClass
A is now #.[Instance of MyClass]

A was 1 2 3 ello World
b 5 6
'F'OWC'Form'
A<F
A is now #.F
A was #.[Instance of MyClass]

Note that Trigger functions are actioned only by assignment, so changing A to a
Form using OWC does not invoke TRIG.

"A'OWC'FORM' pa Note that Trigger Function is not
invoked

However, the connection (between A and TRIG) remains and the Trigger Function
will be invoked if and when the Trigger is re-assigned.

A<99
A is now 99
A was #.A

See "Trigger Fields" on page 165 for information on how a Field (in a Class) may be
used as a Trigger.

102 Dyalog APL/W Programmer's Guide & Language Reference

Idiom Recognition

Idioms are commonly used expressions that are recognised and evaluated internally,
providing a significant performance improvement.

For example, the idiom BV/ 1 pA (where BV is a Boolean vector and A is an array)
would (in earlier Versions of Dyalog APL) have been evaluated in 3 steps as follows:

1. Evaluate pA and store result in temporary variable temp1 (temp1 is just
an arbitrary name for the purposes of this explanation)

2. Evaluate 1temp1 and store result in temporary variable temp2.

3. Evaluate BV/temp2

4. Discard temporary variables

In the current Version of Dyalog APL, the expression is recognised in its entirety and
processed in a single step as if it were a single primitive function. In this case, the
resultant improvement in performance is between 2 and 4.5.

Idiom recognition is precise; an expression that is almost identical but not exactly
identical to an expression given in the "Idiom List" on page 102 table will not be rec-
ognised.

For example, JAV 1 will be recognised as an idiom, but ([JAV) © will not. Similarly,
(,)/ would not be recognized as the Join idiom.

Idiom List

In the following table, arguments to the idiom have types and ranks as follows:

Type Description Rank Description

C Character S Scalar or 1-item vector
B Boolean v Vector

N Numeric M Matrix

P Nested A Array of any rank

X any type

For example: NV: numeric vector, CM: character matrix, PV: nested vector.

Chapter 2: Defined Functions & Operators 103

Idiom Description

ppXA The rank of XA

BV/ NS The subset of NS corresponding to the 1s in
BV

BV/1pXV The positions in XV corresponding to the 1s
in BV

Ty The subset of XV in the index positions
defined by NA (equivalent to XV[NA]J)

XAL{}XA2 XA1 and XA2 are ignored (no result
produced)

XA1{a}XA2 XA1 (XA2 is ignored)

XA1{w}XA2 XA2 (XA1 is ignored)

XAl1{o w}XA2

XA1 and XA2 as a two item vector (XA1
XA2)

{0}XA 0 irrespective of XA
{0} XA 0 corresponding to each item of XA

/pV The enclose of the items of PV (which must
’ be of depth 2) catenated along their last axes
_/pyV The enclose of the items of PV (which must
’ be of depth 2) catenated along their first axes
>HXA The item in the top right of XA (OML<2)
toXA The item in the top right of XA (OML22)
>, XA The item in the bottom right of XA (OML<2)
t¢,A The item in the bottom right of XA (OML22)
0=pXV 1 if XV has a shape of zero, 0 otherwise
0=ppXA étilfe l)fv:iileas a rank of zero (scalar), 0
0==XA 1 if XA has a depth of zero (simple scalar), 0

otherwise

Dyalog APL/W Programmer's Guide & Language Reference

Expression

Description

XM1{(}a) 14 Xw}M2

A simple vector comprising as many items as
there are rows in XM2, where each item is the
number of the first row in XM1 that matches
each row in XM2.

1RQ1PV

A nested vector comprising vectors that each
correspond to a position in the original
vectors of PV — the first vector contains the
first item from each vector in PV, padded to
be the same length as the largest vector, and
so on (OML<2)

1§oPV

A nested vector comprising vectors that each
correspond to a position in the original
vectors of PV — the first vector contains the
first item from each vector in PV, padded to
be the same length as the largest vector, and
so on (OML22)

A\' '=CA

A Boolean mask indicating the leading blank
spaces in each row of CA

+/M\" '=CA

The number of leading blank spaces in each
row of CA

+/"~\BA

The number of leading Is in each row of BA

{(v\' '"#w)/w}CV

CV without any leading blank spaces

{(+/A\" '=w)iw}CV

CV without any leading blank spaces

A nested vector comprising simple character
vectors constructed from the rows of CA
(which must be of depth 1) with all blank
spaces removed

{(+/v\' '"#dw)t Iw}CA

A nested vector comprising simple character
vectors constructed from the rows of CA
(which must be of depth 1) with trailing
blank spaces removed

sop” XA

The length of the first axis of each item in
XA (OML<2)

top XA

The length of the first axis of each item in
XA (OML>2)

Chapter 2: Defined Functions & Operators 105

Expression Description

XAL,<XA2 XA1 rgdeﬁned t(,) be XA1 with XA2 catenated
along its last axis

XALz<XA2 XA1 re.deﬁned tq be XA1 with XA2 catenated
along its first axis

{w[Aw]}XV XV sorted into numerical or alphabetical
order

([¥w]}XV XV sorteq into reverse numerical or
alphabetical order
XM with the rows sorted into numerical or

{wldws 1} XM alphabetical order

{w[¥w:]} XM XM w1Fh the rows sortfzd into reverse
numerical or alphabetical order

_ 1 if XA has a depth of 1 (simple array), 0

1==XA .

otherwise
_ 1 if XA has a depth of 0 or 1 (simple scalar,

1==,XA .
vector, etc.), 0 otherwise

OepXA 1 if XA is empty, 0 otherwise

~0epXA 1 if XA is not empty, 0 otherwise

£ XA The first sub-array along the first axis of XA

/XA The first sub-array along the last axis of XA

F#XA The last sub-array along the first axis of XA

/XA The last sub-array along the last axis of XA

«ONA Euler's idiom (accurate when NA is a multiple
0f 0J0.5)

0=» 1 if XA has an empty first dimension, 0

P otherwise (OML <2)
0%o 1 if XA does not have an empty first
P dimension, 0 otherwise (OML <2)

Classic version only: The character numbers

OAViCA (atomic vector index) corresponding to the

characters in CA

106 Dyalog APL/W Programmer's Guide & Language Reference

Notes

/1 and /1p, as well as providing an execution time advantage, reduce intermediate
workspace usage and, consequently, the incidence of memory compactions and the
likelihood ofa WS FULL.

NA>"cXV is implemented as XV[NA], which is significantly faster. The two are
equivalent but the former now has no performance penalty.

, / is special-cased only for vectors of vectors or scalars. Otherwise, the expression is
evaluated as a series of concatenations. Recognition of this idiom turns join from an

n-squared algorithm into a linear one. In other words, the improvement factor is pro-
portional to the size of the argument vector.

>¢ and >$, now take constant time. Without idiom recognition, the time taken
depends linearly on the number of items in the argument.

0== takes a small constant time. Without idiom recognition, the time taken would
depend on the size and depth of the argument, which in the case of a deeply nested
array could be significant.

481 is special-cased only for a vector of nested vectors, each of whose items is of the
same length.

{(¥a) 14w} can accommodate much larger matrices than its constituent primitives.
It is particularly effective when bound with a left argument using the compose oper-
ator:

findemate{(da)t1iw} A find rows in mat table

In this case, the internal hash table for mat is retained so that it does not need to be
generated each time the monadic derived function f ind is applied to a matrix argu-
ment.

{(v\'" "#w)/w}and {(+/*\"' '=w)lw} are two codings of the same idiom.
Both use the same C code for evaluation.

~o' ' typically takes a character matrix argument and returns a vector of char-
acter vectors from which all blanks have been removed. An example might be the
character matrix of names returned by the system function ONL. In general, this idiom
accommodates character arrays of any rank.

{(+/v\"' '"#éw)1 " tw} typically takes a character matrix argument and retums a
vector of character vectors. Any embedded blanks in each row are preserved but trail-
ing blanks are removed. In general, this idiom accommodates character arrays of any
rank.

Chapter 2: Defined Functions & Operators 107

s0p”A(OML<2)and top” A (OML>2) avoid having to create an intermediate nested
array of shape vectors.

For an array of vectors, this idiom quickly returns a simple array of the length of each
vector.

sop™ 'Hi' 'Pete' A Vector Lengths
2 4

For an array of matrices, it returns a simple array of the number of rows in each
matrix.

sop OCR™IONL 3 A Lines in functions
5 21...

A, <A and A5 <Aoptimise the catenation of an array to another array along the last
and first dimension respectively.

Among other examples, this idiom optimises repeated catenation of a scalar or vector
to an existing vector.

props,«c 'Posn' 0 O
props,«c'Size' 50 50
vector,«2+4

Note that the idiom is not applied if the value of vector V is shared with another sym-
bol in the workspace, as illustrated in the following examples:

Example 1: the idiom is used to perform the catenation to V1.

Vi<110
Vi,«11

Example 2: the idiom is not used to perform the catenation to V1, because its value is
at that point shared with V2.

Vi<110
V2<Vi
Vi,«11

Example 3: the idiom is not used to perform the catenation to V in Join[1] because
its value is, at that point, shared with the array used to call the function.

V V<V Join A
[1] V,<A
\'4
(110) Join 11
12345678910 11

108 Dyalog APL/W Programmer's Guide & Language Reference

~£XA, =/ XA, 4#XA, and #/ XA return the first/last rank (O[“1+ppA) sub-array
along the first/last axis of XA. For example, if V is a vector, then:

/v First item of vector

~/V Last item of vector

Similarly, if M is a matrix, then:

“#M First row of matrix
/M First column of matrix
+#M Last row of matrix
/M Last column of matrix

The idiom generalises uniformly to higher-rank arrays.

Euler's idiom*oNA produces accurate results for right argument values that are a
multiple of 0J0.5. This is so that Euler's famous identity 0=1+*00J1 holds,
despite pi being represented as a floating point number.

Chapter 2: Defined Functions & Operators 109

Search Functions and Hash Tables

Primitive dyadic search functions, such as t (index of) and € (membership) have a
principal argument in which items of the other subject argument are located.

In the case of 1, the principal argument is the one on the left and in the case of €, it is
the one on the right. The following table shows the principal (P) and subject (s) argu-
ments for each of the functions.

P 1 s Index of

s € P Membership

s n P Intersection
Pus Union

s ~ P Without

P {(Ja) 14w} s Matrix Iota (idiom)
PeA and Poy Sort

The Dyalog APL implementation of these functions already uses a technique known
as hashing to improve performance over a simple linear search. (Note that € (find)
does not employ the same hashing technique, and is excluded from this discussion.)

Building a hash table for the principal argument takes a significant time but is
rewarded by a considerably quicker search for each item in the subject. Unfor-
tunately, the hash table is discarded each time the function completes and must be
reconstructed for a subsequent call (even ifits principal argument is identical to that
in the previous one).

For optimal performance of repeated search operations, the hash table may be
retained between calls, by binding the function with its principal argument using the
primitive o (compose) operator. The retained hash table is then used directly when-
ever this monadic derived function is applied to a subject argument.

Notice that retaining the hash table pays off only on a second or subsequent appli-
cation of the derived function. This usually occurs in one of two ways: either the
derived function is named for later (and repeated) use, as in the first example below
or it is applied repeatedly as the operand of a primitive or defined operator, as in the
second example.

110 Dyalog APL/W Programmer's Guide & Language Reference

Example: naming a derived function.

words«'red' 'ylo' 'grn' 'brn' 'blu' 'pnk' 'blk'

find«wordse1 A monadic find
function

find'blk' 'blu' 'grn' 'ylo' n
7532

find'grn' 'brn' 'ylo' 'red' a fast find

3 421

Example: repeated application by (**) each operator.

€oJA”'This' 'And' 'That'
1000 100 10O00O0

Locked Functions & Operators

A defined operation may be locked by the system function JLOCK. A locked oper-
ation may not be displayed or edited. The system function [JCR returns an empty
matrix of shape 0 0 and the system functions [JNR and [JVR return an empty vector for
a locked operation.

Stop, trace and monitor settings may be established by the system functions JSTOP,
OTRACE and [JMONITOR respectively. Existing stop, trace and monitor settings are
cancelled when an operation is locked.

A locked operation may not be suspended, nor may a locked operation remain pend-
ent when execution is suspended. The state indicator is cut back as described below.

Chapter 2: Defined Functions & Operators 111

The State Indicator

The state of execution is dynamically recorded in the STATE INDICATOR. The
state indicator identifies the chain of execution for operators, functions and the eval-
uated or character input/output system variables (0 and [1). At the top of the state
indicator is the most recently activated operation.

Execution may be suspended by an interrupt, induced by the user, the system, or by a
signal induced by the system function [JSIGNAL or by a stop control set by the sys-
tem function JSTOP. Ifthe interrupt (or event which caused the interrupt) is not
defined as a trappable event by the system variable JTRAP, the state indicator is cut
back to the first of either a defined operation or the evaluated input prompt (0) such
that there is no locked defined operation in the state indicator. The topmost oper-
ation left in the state indicator is said to be SUSPENDED. Other operations in the
chain of execution are said to be PENDENT.

The state indicator may be examined when execution is suspended by the system
commands)SI and) SINL. The names of the defined operations in the state indi-
cator are given by the system functions [JSI and OXSI while the line numbers at
which they are suspended or pendent is given by the system variable (JLC.

Suspended execution may be resumed by use of the Branch function (see "Branch:"
on page 237). Whilst execution is suspended, it is permitted to enter any APL expres-
sion for evaluation, thereby adding to the existing state indicator. Therefore, there
may be more than one LEVEL OF SUSPENSION in the state indicator. Ifthe state
indicator is cut back when execution is suspended, it is cut back no further than the
prior level of suspension (if any).

Examples
vV F
[1] G
v
vV G
[1] "FUNCTION G'+
v
2IFI

SYNTAX ERROR
G[1] 'FUNCTION G'+
A

)SI
.G[1]*
Fl1]

e 3 R

112 Dyalog APL/W Programmer's Guide & Language Reference

fdLock'G'

Q] F 1
SYNTAX ERROR
F[1]1 G

A

)SI
FL1]*

LG[1]x
FL1]

e FH e R

A suspended or pendent operation may be edited by the system editor or redefined
using [JF X provided that it is visible and unlocked. However, pendent operations
retain their original definition until they complete, or are cleared from the State
Indicator. When a new definition is applied, the state indicator is repaired if nec-
essary to reflect changes to the operations, model syntax, local names, or labels.

Chapter 2: Defined Functions & Operators 113

Dynamic Functions & Operators

A Dynamic Function (operator) is an alternative function definition style suitable for
defining small to medium sized functions. It bridges the gap between operator expres-
sions: rank<pop and full ‘header style’ definitions such as:

V rslt«<larg func rarg;local...

In its simplest form, a dynamic function is an APL expression enclosed in curly
braces { } possibly including the special characters o and w to represent the left and
right arguments of the function respectively. For example:

{(+/w)+pw} 1 2 3 & A Arithmetic Mean (Average)
2.5

3 {wxza} 64 A ath root
N

Dynamic functions can be named in the normal fashion:

mean<{(+/w)*pw}
mean” (2 3)(4 5)
2.5 4.5

Dynamic Functions can be defined and used in any context where an APL function
may be found, in particular:

In immediate execution mode as in the examples above.

Within a defined function or operator.

As the operand of an operator such as each (7).

Within another dynamic function.

The last point means that it is easy to define nested local functions.

114 Dyalog APL/W Programmer's Guide & Language Reference

Multi-Line Dynamic Functions

The single expression which provides the result of the Dynamic Function may be pre-
ceded by any number of assignment statements. Each such statement introduces a
name which is local to the function.

For example in the following, the expressions sum<« and num< create local variables
sum and num.

mean<{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
sum+num A Mean

}

Note that Dynamic Functions may be commented in the usual way using A.

When the interpreter encounters a local definition, a new local name is created. The
name is shadowed dynamically exactly as if the assignment had been preceded by:
Oshadow name 9.

It is important to note the distinction between the two types of statement above.
There can be many assignment statements, each introducing a new local variable,
but only a single expression where the result is not assigned. As soon as the inter-
preter encounters such an expression, it is evaluated and the result returned imme-
diately as the result of the function.

For example, in the following,

mean<{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
sum, num A Attempt to show sum,num (wrong)!
sum+num A and return result.
}

... as soon as the interpreter encounters the expression sum, num, the function ter-
minates with the two element result (sum, num) and the following line is not eval-
uated.

To display arrays to the session from within a Dynamic function, you can use the
explicit display forms [J« or [J« as in:

mean<{ A Arithmetic mean
sum<+/w A Sum of elements
num<pw A Number of elements
J<sum, num A show sum,num.
sum+num A ... and return result.

Chapter 2: Defined Functions & Operators 115

Note that local definitions can be used to specify local nested Dynamic Functions:

rms<{ A Root Mean Square
root<«{wx0.5} A V Square root
mean<{(+/w)+pw} A V Mean
square<{wxw} A vV Square

root mean square w

}
Default Left Argument

The special syntax: a«expr isused to give a default value to the left argument ifa
Dynamic Function is called monadically. For example:

root<«{ A ath root
o<2 A default to sqrt
wx<o,

}

The expression to the right of o« is evaluated only if its Dynamic Function is called
with no left argument.

116 Dyalog APL/W Programmer's Guide & Language Reference

Guards
A Guard is a Boolean-single valued expression followed on the right by a ' : '. For
example:

0==w: A Right arg simple scalar

0<0: A Left arg negative

The guard is followed by a single APL expression: the result of the function.
w20: w*x0.5 A Square root if non-negative.

A Dynamic function may contain any number of guarded expressions each on a sep-
arate line (or collected on the same line separated by diamonds). Guards are eval-
uated in turn until one of them yields a 1. The corresponding expression to the right
of'the guard is then evaluated as the result of the function.

If an expression occurs without a guard, it is evaluated immediately as the default
result of the function. For example:

sign<{
w>0: '+ve' A Positive
w=0: 'zero' A zero
) ‘-ve' A Negative (Default)

Local definitions and guards can be interleaved in any order.

Note again that any code following the first unguarded expression (which terminates
the function) could never be executed and would therefore be redundant.

log«{
tie«a [Ofstie 0
cno«w [fappend tie
tieJfuntie tie
1:rslt«cno

Append w to file a.
tie number for file,
new component number,
untie file,

comp number as shy

DDODDODDOD®DD

result.

Chapter 2: Defined Functions & Operators 117

Shy Result

Dynamic Functions are usually 'pure’ functions that take arguments and return
explicit results. Occasionally, however, the main purpose of the function might be a
side-effect such as the display of information in the session, or the updating of a file,
and the value of a result, a secondary consideration. In such circumstances, you
might want to make the result 'shy', so that it is discarded unless the calling context
requires it. This can be achieved by assigning a dummy variable after a (true) guard:

log+«{ A
tie<a [Ofstie O
cno+w [fappend tie
tieJfuntie tie
1:rslt«cno

DDO®DDO®D

result.

Append w to file a.
tie number for file,
new component number,
untie file,

comp number as shy

118 Dyalog APL/W Programmer's Guide & Language Reference

Static Name Scope

When an inner (nested) Dynamic Function refers to a name, the interpreter searches
for it by looking outwards through enclosing Dynamic Functions, rather than search-
ing back along the execution stack. This regime, which is more appropriate for
nested functions, is said to employ static scope instead of APL’s usual dynamic
scope. This distinction becomes apparent only if a call is made to a function defined
at an outer level. For the more usual inward calls, the two systems are indis-
tinguishable.

For example, in the following function, variable type is defined both within which
itself and within the inner function fn1. When fn1 calls outward to fn2 and fn2
refers to type, it finds the outer one (with value 'static')rather than the one
defined in fn1:

which<{
type<«'static'
fni<{
type«'dynamic'

fn2 w
}

fn2«{
type w

fnl w
}

which'scope'
static scope

Chapter 2: Defined Functions & Operators 119

Tail Calls

A novel feature of the implementation of Dynamic Functions is the way in which tail
calls are optimised.

When a Dynamic Function calls a sub-function, the result of the call may or may not
be modified by the calling function before being returned. A call where the result is
passed back immediately without modification is termed a tail call.

For example in the following, the first call on function fact is a tail call because the
result of fact isthe result of the whole expression, whereas the second call isn’t
because the result is subsequently multiplied by w.

(oaxw)fact w-1 A Tail call on fact.
wxfact w-1 A Embedded call on fact.

Tail calls occur frequently in Dynamic Functions, and the interpreter optimises them
by re-using the current stack frame instead of creating a new one. This gives a sig-
nificant saving in both time and workspace usage. It is easy to check whether a call is
a tail call by tracing it. An embedded call will pop up a new trace window for the
called function, whereas a tail call will re-use the current one.

120 Dyalog APL/W Programmer's Guide & Language Reference

Using tail calls can improve code performance considerably, although at first the
technique might appear obscure. A simple way to think of a tail call is as a branch
with arguments. The tail call, in effect, branches to the first line of the function after
installing new values for w and a.

Iterative algorithms can almost always be coded using tail calls.

In general, when coding a loop, we use the following steps; possibly in a different
order depending on whether we want to test at the ‘top’ or the ‘bottom’ of the loop.

Initialise loop control variable(s).A init

Test loop control variable.n test

Process body of loop.A proc

Modify loop control variable for next iteration.A mod
Branch to step 2.8 jump

N =

For example, in classical APL you might find the following:

vV value<«limit loop valuen init
[1] top:~(0OCT>value-limit)/0A test
[2] value«Next valuem proc, mod
[3] »topA jump

\'4

Control structures help us to package these steps:

V value<«limit loop valuen init
[1] :While OCT<value-limita test
[2] value«Next valuem proc, mod
[3] :EndWhilea jump

\'

Using tail calls:
loop«{A init

OCT>a-w:wA test
o V Next wmA proc, mod, jump

Chapter 2: Defined Functions & Operators 121

Error-Guards

An error-guard is (an expression that evaluates to) a vector of error numbers, fol-
lowed by the digraph: : :, followed by an expression, the body of the guard, to be
evaluated as the result of the function. For example:

11 5 :: wx0 A Trap DOMAIN and LENGTH errors.

In common with : Trap and JTRAP, error numbers 0 and 1000 are catchalls for syn-
chronous errors and interrupts respectively.

When an error is generated, the system searches statically upwards and outwards for
an error-guard that matches the error. If one is found, the execution environment is
unwound to its state immediately prior to the error-guard’s execution and the body
of the error-guard is evaluated as the result of the function. This means that, during
evaluation of the body, the guard is no longer in effect and so the danger of a hang
caused by an infinite ‘trap loop’, is avoided.

Notice that you can provide ‘cascading’ error trapping in the following way:

O::try_2nd
O::try_1st
expr

In this case, if ex pr generates an error, its immediately preceding: 0: : catches it and
evaluates try_1st leaving the remaining error-guard in scope. If t ry_1st fails,
the environment is unwound once again and try_2nd is evaluated, this time with
no error-guards in scope.

Examples:

Open returns a handle for a component file. If the exclusive tie fails, it attempts a
share-tie and if this fails, it creates a new file. Finally, if all else fails, a handle of 0 is
returned.

open<+{
0::0
22::w [JFCREATE O
24 25::w OFSTIE O
w OFTIE O

Handle for component file w.
Fails:: return 0 handle.
FILE NAME:: create new one.
FILE TIED:: try share tie.
Attempt to open file.

DDODO®DODD

122 Dyalog APL/W Programmer's Guide & Language Reference

An errorin di v causes it to be called recursively with improved arguments.

div<{
o<l
5::1v/4ta w
11::0 V w+w=0
oW

Tolerant division:: a+0 - a.
default numerator.

LENGTH:: stretch to fit.
DOMAIN:: increase divisor.
attempt division.

>DO®DODDODD

}

Notice that some arguments may cause d1i v to recur twice:

6 4 2 div 3 2

> 6 4 2 div3 20
> 6 4 2 div 3 2 1
> 2 22

The final example shows the unwinding of the local environment before the error-
guard’s body is evaluated. Local name trap is set to describe the domain ofits fol-
lowing error-guard. When an error occurs, the environment is unwound to expose
trap’sstatically correct value.

add<«{
trap«'domain' o 11::trap
trap<'length' ¢ 5::trap

o+w
}
2 add 3 A Addition succeeds
5
2 add 'three' A DOMAIN ERROR generated.
domain

2 3 add 4+ 5 6 A LENGTH ERROR generated.
length

Chapter 2: Defined Functions & Operators 123

Dynamic Operators

The operator equivalent of a dynamic function is distinguished by the presence of
either of the compound symbols oo or ww anywhere in its definition. oo and ww rep-
resent the left and right operand of the operator respectively.

Example

The following monadic each operator applies its function operand only to unique
elements of its argument. It then distributes the result to match the original argument.
This can deliver a performance improvement over the primitive each (") operator if
the operand function is costly and the argument contains a significant number of
duplicate elements. Note however, that if the operand function causes side effects,
the operation of dynamic and primitive versions will be different.

each<«{ A Fast each:
shp«pw A Shape and
vec«,w A ... ravel of arg.
nub«uvec A Vector of unique elements.
res<ao’ nub A Result for unique elts.
jdx«nubivec A Indices of arg in nub

shppidx>~cres A ... distribute result.

}

The dyadic e | se operator applies its left (else right) operand to its right argument
depending on its left argument.

else«{
o: 0o w A True: apply Left operand
Ww W A Else, .. Right
}
0 1 [elsel™ 2.5 A Try both false and true.

124 Dyalog APL/W Programmer's Guide & Language Reference

Recursion

A recursive Dynamic Function can refer to itself using its name explicitly, but
because we allow unnamed functions, we also need a special symbol for implicit
self-reference: 'V '. For example:

fact<{ A Factorial w.
w<l: 1 A Small w, finished,
wxV w-1 A Otherwise recur.

}

Implicit self-reference using ' V' has the further advantage that it incurs less inter-
pretative overhead and is therefore quicker. Tail calls using 'V ' are particularly effi-
cient.

Recursive Dynamic Operators refer to their derived functions, that is the operator
bound with its operand(s) using V or the operator itself using the compound symbol:
VV. The first form of self reference is by far the more frequently used.

pow<«{ A Function power.
0=0:w A Apply function operand o times.
(0-1)V 000 w A QO OO GO ... W

The following example shows a rather contrived use of the second form of (operator)
selfreference. The exp operator composes its function operand with itself on each
recursive call. This gives the effect of an exponential application of the original oper-
and function:

exp+{ A Exponential fn application.
0=0:00 W A Apply operand 2x*o times.
(a-1)accao VV w A (adcao)e(...) ... w

}

succ«{1l+w} A Successor (increment).

10 succ exp O
1024

Chapter 2: Defined Functions & Operators 125

Example: Pythagorean triples

The following sequence shows an example of combining Dynamic Functions and
Operators in an attempt to find Pythagorean triples: (3 4 5)(5 12 13) ...

sqrt«{wx0.5} A Square root.
sqrt 9 16 25
3 45
hyp«{sqrt+/>wx2} A Hypoteneuse of
triangle.

hyp(3 &) (4 5)(5 12)
5 6.403124237 13

intg«{w=lw} A Whole number?
intg 2.5 3 4.5

010
pyth«{intg hyp w} A Pythagorean pair?
pyth(3 &) (4% 9)(5 12)

101
pairs<{,tw w} A Pairs of numbers 1..w.
pairs 3

11 12 13 21 22 23 31 32 33
filter«{(oo w)/w} A Op: w filtered by aa.

pyth filter pairs 12 A Pythagorean pairs 1..12
34+ +#3 512 68 86 912 125 12 9

So far, so good, but we have some duplicates: (6 8) isjust double (3 4).

rpm<{ A Relatively prime?
w=0:a=1 p C.f. Euclid's gcd.
wV wla

|7 A Note the /~

rpm(2 4)(3 4)(6 8)(16 27)
0101

rpm filter pyth filter pairs 20
34+ 43 512 8 15 12 5 15 8

126 Dyalog APL/W Programmer's Guide & Language Reference

We can use an operator to combine the tests:

and<«{ A Lazy parallel 'And'.
mask<oo w A Left predicate
selects...
mask\ww mask/w A args for right
predicate.
}

pyth and rpm filter pairs 20
34+ 43 512 815 12 5 15 8

Better, but we still have some duplicates: (3 &) (4 3).

less«{</>w}
less(3 4)(4 3)
10

less and pyth and rpm filter pairs 40
34+ 512 724 8 15 9 40 12 35 20 21

And finally, as promised, triples:

{w,hyp w} less and pyth and rpm filter pairs 35
3 45 512 13 7 24 25 8 15 17 12 35 37 20 21 29

A Larger Example

Function tokens uses nested local D-Fns to split an APL expression into its con-
stituent tokens. Note that all calls on the inner functions: Lex, acc, and the
unnamed D-Fn in each token case, are tail calls. In fact, the only stack calls are those
on function: al |, and the unnamed function: {wv~1¢w}, within the ‘Char literal’
case.

Chapter 2: Defined Functions & Operators 127

tokens<{ A Lex of APL src
line. .
alph<JA,0A,'_AA',26t1740AV A Alphabet for names.
all«{+/*\oew} A No. of leading aew.

acc<{(a,t/w)lex>{/w} A Accumulate tokens.
lex<{
O=pw:o ¢ hd«tw A Next char else
done.
hd=" "':0 A White Space.

size«w all'
0 acc size w

tw

hdealph:a{ A Name
size«w all alph,dD
0 acc size w

w

hde'0: ' :a{ A System Name/Keyword
size«w all hd,alph
0 acc size w

Yw

hd="""":a{ A Char Lliteral
size«+/"\{wv 1dw}#\hd=w
0 acc size w

w

hde[dD, '~ "' :a{ A Numeric Lliteral
size«w all OD,'.TE'
0 acc size w

tw

hd='pa':0a acc(pw)w A Comment

o acc 1 w A Single char token.

}
(Opc'')lex,w

display tokens'xtok<sizetsrce A Next token'

===

| . . .o .
| Ixtok| |«<| |sizel |t] |Isrcel | | |a Next token]| |
| 1 oo o 1 1

>=—=-,

128 Dyalog APL/W Programmer's Guide & Language Reference

Restrictions

Currently multi-line Dynamic Functions can’t be typed directly into the session. The
interpreter attempts to evaluate the first line with its trailing left brace and a SYNTAX
ERROR results.

Dynamic Functions need not return a result. However even a non-result-returning
expression will terminate the function, so you can’t, for example, call a non-result-
returning function from the middle of a Dynamic Function.

You can trace a Dynamic Function only ifiit is defined on more than one line. Other-
wise it is executed atomically in the same way as an execute (¢) expression. This
deliberate restriction is intended to avoid the confusion caused by tracing a line and
seeing nothing change on the screen.

Dynamic Functions do not currently support [JCS.

Supplied Workspaces

You can find more examples of dynamic functions and operators in workspaces in
the samples\dfns directory.

DFNS.DWS - a selection of utility functions.

MIN.DWS - an example application.

Chapter 2: Defined Functions & Operators 129

APL Line Editor

The APL Line Editor described herein is included for completeness and for adher-
ence to the ISO APL standard. See User Guide for a description of the more pow-
erful full-screen editor, [JED.

Using the APL Line Editor, functions and operators are defined by entering Def-
inition Mode. This mode is opened and closed by the del symbol, V. Within this
mode, all evaluation of input is deferred. The standard APL line editor (described
below) is used to create and edit operations within definition mode.

Operations may also be defined using the system function JF X (implicit in a JED
fix) which acts upon the canonical (character), vector, nested or object representation
form of an operation. (See "Fix Definition: " on page 472 for details.)

Functions may also be created dynamically or by function assignment.

The line editor recognises three forms for the opening request.

Creating Defined Operation

The opening V symbol is followed by the header line of a defined operation. Redun-
dant blanks in the request are permitted except within names. If acceptable, the
editor prompts for the first statement of the operation body with the line-number 1
enclosed in brackets. On successful completion of editing, the defined operation
becomes the active definition in the workspace.

Example
VR<FOO
[1] R<«10
(2] v
FOO

10

130 Dyalog APL/W Programmer's Guide & Language Reference

The given operation name must not have an active referent in the workspace, other-
wise the systemreports defn error and the system editor is not invoked:

)VARS
SALES X Y

VR«SALES Y
defn error

The header line of the operation must be syntactically correct, otherwise the system
reports defn error and the system editor is not invoked:

VR<«A B C D:G
defn error

Listing Defined Operation

The v symbol followed by the name of a defined operation and then by a closing Vv,
causes the display of the named operation. Omitting the function name causes the
suspended operation (i.e. the one at the top of the state indicator) to be displayed and
opened for editing.

Example
VFOOV
vV R<FOO
[1] R<10
v
)SI
#.FOO[1] x
v
vV R<FOO
[1] R«<10

[2]

Chapter 2: Defined Functions & Operators 131

Editing Active Defined Operation

Definition mode is entered by typing V followed optionally by a name and editing
directive.

The v symbol on its own causes the suspended operation (i.e. the one at the top of
the state indicator) to be displayed. The editor then prompts for a statement or edit-
ing directive with a line-number one greater than the highest line-number in the
function. Ifthe state indicator is empty, the system reports defn error and def-
inition mode is not entered.

The v symbol followed by the name of an active defined operation causes the dis-
play of the named operation. The editor then prompts for input as described above.
If the name given is not the name of an active referent in the workspace, the opening
request is taken to be the creation of a new operation as described in paragraph 1. If
the name refers to a pendent operation, the editor issues the message warning
pendent operation priorto displaying the operation. Ifthe name refers to a
locked operation, the system reports defn error and definition mode is not entered.

The v symbol followed by the name of an active defined operation and an editing
directive causes the operation to be opened for editing and the editing directive
actioned. Ifthe editing directive is invalid, it is ignored by the editor which then
prompts with a line-number one greater than the highest line-number in the
operation. Ifthe name refers to a pendent operation, the editor issues the message
warning pendent operation priorto actioning the editing directive. Ifthe
name refers to a locked operation, the system reports defn error and definition
mode is not entered.

On successful completion of editing, the defined operation becomes the active def-
inition in the workspace which may replace an existing version of the function.
Monitors, and stop and trace vectors are removed.

Example
VFOO[2]
[2] R<«Rx2

[3] W

132 Dyalog APL/W Programmer's Guide & Language Reference

Editing Directives

Editing directives, summarised in Figure 2(iv) are permitted as the first non-blank
characters either after the operation name on opening definition mode for an active
defined function, or after a line-number prompt.

Syntax | Description

v Closes definition mode

(01 Displays the entire operation

[On] Displays the operation starting at line n

[nO] Displays only line n

[Aan] Deletes line n

[nam] | Deletes m lines starting at line n

[n] Prompts for input at line n

[n]s Replaces or inserts a statement at line n

Edits line n placing the cursor at character position m where an
Edit Control Symbol performs a specific action.

[n0m]

Chapter 2: Defined Functions & Operators 133

Line Numbers

Line numbers are associated with lines in the operation. Initially, numbers are
assigned as consecutive integers, beginning with [0] for the header line. The
number associated with an operation line remains the same for the duration of the def-
inition mode unless altered by editing directives. Additional lines may be inserted
by decimal numbering. Up to three places of decimal are permitted. On closing def-
inition mode, operation lines are re-numbered as consecutive integers.

The editor always prompts with a line number. The response may be a statement line
or an editing directive. A statement line replaces the existing line (if there is one) or
becomes an additional line in the operation:

VR<A PLUS B
[1] R<«A+B

[2]

Position

The editing directive [n], where n is a line number, causes the editor to prompt for
input at that line number. A statement or another editing directive may be entered.
If a statement is entered, the next line number to be prompted is the previous number
incremented by a unit of the display form of the last decimal digit. Trailing zeros are
not displayed in the fractional part of a line number:

[2] [0.8]
[0.8] A MONADIC OR DYADIC +
[0.9] A A <> OPTIONAL ARGUMENT

[1]

The editing directive [n]s, where n is a line number and s is a statement, causes the
statement to replace the current contents of line n, or to insert line n if there is none:

[1] [0] R«<{A} PLUS B
[1]

Delete

The editing directive [An], where n is a line number, causes the statement line to be
deleted. The form [nAm], where n is a line number and m is a positive integer,
causes m consecutive statement lines starting from line number n to be deleted.

134 Dyalog APL/W Programmer's Guide & Language Reference

Edit

The editing directive [nOm], where n is a line number and m is an integer number,
causes line number n to be displayed and the cursor placed beneath the m{th} char-
acter on a new line for editing. The response is taken to be edit control symbols
selected from:

/ to delete the character immediately above the symbol.

1109 to insert from 1 to 9 spaces immediately prior to the character above
the digit.

AtoZ to insert multiples of 5 spaces immediately prior to the character

above the letter, where A =5, B= 10, C = 15 and so forth.

to insert the text after the comma, including explicitly entered
trailing spaces, prior to the character above the comma, and then re-
display the line for further editing with the text inserted and any
preceding deletions or space insertions also effected.

to insert the text after the comma, including explicitly entered
trailing spaces, prior to the character above the comma, and then
complete the edit of the line with the text inserted and any
preceding deletions or space insertions also effected.

Invalid edit symbols are ignored. Ifthere are no valid edit symbols entered, or if
there are only deletion or space insertion symbols, the statement line is re-displayed
with characters deleted and spaces inserted as specified. The cursor is placed at the
first inserted space position or at the end of the line if none. Characters may be
added to the line which is then interpreted as seen.

The line number may be edited.

Chapter 2: Defined Functions & Operators 135

Examples
(1] (1071
[1] R<«A+B

,>(0=0ONC'A")p1<[LC o
[1] ->(0=0ONC'A')p1<[LC o R<«A+B

.0>END
[2] R<B
[3] END:
[4]

The form [n[J0] causes the line number n to be displayed and the cursor to be posi-
tioned at the end of the displayed line, omitting the edit phase.

Display

The editing directive [[J]causes the entire operation to be displayed. The form
[On1] causes all lines from line number n to be displayed. The form [n(] causes
only line number n to be displayed:

[4] (o0l

(0] R«{A} PLUS B
[0]

[o0] (ol

(0] R<{A} PLUS B
[0.1] a MONADIC OR DYADIC +
[1] ->(0=0ONC'A')p1+[0LC o R«A+B o©=END

[2] R<B
[3] "END:
[4]

Close Definition Mode

The editing directive V causes definition mode to be closed. The new definition of
the operation becomes the active version in the workspace. Ifthe name in the oper-
ation header (which may or may not be the name used to enter definition mode) refers
to a pendent operation, the editor issues the message warning pendent
operation before exiting. The new definition becomes the active version, but the
original one will continue to be referenced until the operation completes or is cleared
from the State Indicator.

136 Dyalog APL/W Programmer's Guide & Language Reference

If the name in the operation header is the name of a visible variable or label, the

editorreports defn error and remains in definition mode. It is then necessary
to edit the header line or quit.

Ifthe header line is changed such that it is syntactically incorrect, the system reports
defn error,and re-displays the line leaving the cursor beyond the end of the text
on the line. Backspace/linefeed editing may be used to alter or cancel the change:

(3] [oOl] - display line 0

[0] R<{A} PLUS B

[0] R<{A} PLUS B:G;H - put syntax error in line O
defn error

[0] R«{A} PLUS B:G;H - line redisplayed
;G;H - backspace/linefeed editing
[1]

Local names may be repeated. However, the line editor reports warning messages as
follows:

1. Ifa name is repeated in the header line, the system reports "warning dupli-
cate name" immediately.

2. If a label has the same name as a name in the header line, the system reports
"warming label name present in line 0" on closing definition mode.

3. If a label has the same name as another label, the system reports "warning
duplicate label" on closing definition mode.

Chapter 2: Defined Functions & Operators 137

Improper syntax in expressions within statement lines of the function is not detected
by the system editor with the following exceptions:

o If the number of opening parentheses in each entire expression does not
equal the number of closing parentheses, the system reports "warning
unmatched parentheses", but accepts the line.

o If the number of opening brackets in each entire expression does not equal
the number of closing brackets, the system reports "warning unmatched
brackets", but accepts the line.

These errors are not detected if they occur in a comment or within quotes. Other syn-
tactical errors in statement lines will remain undetected until the operation is
executed.

Example

[4] R«(A[:;1)=2)#¢EXP,"'x2
warning unmatched parentheses
warning unmatched brackets

(5]

Note that there is an imbalance in the number of quotes. This will result in a
SYNTAX ERROR when this operation is executed.

Quit Definition Mode

The user may quit definition mode by typing the INTERRUPT character. The active
version of the operation (if any) remains unchanged.

138 Dyalog APL/W Programmer's Guide & Language Reference

139

Chapter 3:

Object Oriented Programing

Introducing Classes

A Class is a blueprint from which one or more Instances of the Class can be created
(instances are sometimes also referred to as Objects).

A Class may optionally derive from another Class, which is referred to as its Base
Class.

A Class may contain Methods, Properties and Fields (commonly referred to together
as Members) which are defined within the body of the class script or are inherited
from other Classes. This version of Dyalog APL does not support Events although it
is intended that these will be supported in a future release. However, Classes that are
derived from .Net types may generate events using 4 [NQ.

A Class that is defined to derive from another Class automatically acquires the set of
Properties, Methods and Fields that are defined by its Base Class. This mechanism is
described as inheritance.

A Class may extend the functionality of its Base Class by adding new Properties,
Methods and Fields or by substituting those in the Base Class by providing new ver-
sions with the same names as those in the Base Class.

Members may be defined to be Private or Public. A Public member may be used or
accessed from outside the Class or an Instance of the Class. A Private member is inter-
nal to the Class and (in general) may not be referenced from outside.

Although Classes are generally used as blueprints for the creation of instances, a
class can have Shared members which can be used without first creating an instance

140 Dyalog APL/W Programmer's Guide & Language Reference

Defining Classes

A Class is defined by a script that may be entered and changed using the editor. A
class script may also be constructed from a vector of character vectors, and fixed
using [JF IX.

A class script begins with a : Class statement and ends with a : EndClass state-
ment.

For example, using the editor:

JCLEAR
clear ws
JED oAnimal

[an edit window opens containing the following skeleton Class script ...]

:Class Animal
:EndClass

[the user edits and fixes the Class script]

JCLASSES
Animal

[ONCe'Animal'
9.4

Chapter 3: Object Oriented Programing 141

Editing Classes

Between the :Class and : EndClass statements, you may insert any number of
function bodies, Property definitions, and other elements. When you fix the Class
Script from the editor, these items will be fixed inside the Class namespace.

Note that the contents of the Class Script defines the Class in its entirety. Y ou may
not add or alter functions by editing them independently and you may not add var-
iables by assignment or remove objects with [JEX.

When you re-fix a Class Script using the Editor or with [JF I X, the original Class is
discarded and the new definition, as specified by the Script, replaces the old one in
its entirety.

Note:

Associated with a Class (or an instance of a class) there is a completely separate
namespace which surrounds the class and can contain functions, variables and so
forth that are created by actions external to the class.

For example, if X is not a public member of the class MyC l as s, then the following
expression will insert a variable X into the namespace which surrounds the class:

MyClass.X<«99

The namespace is analogous to the namespace associated with a GUI object and will
be re-initialised (emptied) whenever the Class is re-fixed. Objects in this parallel
namespace are not visible from inside the Class or an Instance of the Class.

142 Dyalog APL/W Programmer's Guide & Language Reference

Inheritance

If you want a Class to derive from another Class, you simply add the name of that
Class to the : Class statement using colon+space as a separator.

The following example specifies that CLASS2 derives from CLASS1.

:Class CLASS2: CLASS1
:EndClass

Note that CLASS1 is referred to as the Base Class of CLASS2.

Ifa Class has a Base Class, it automatically acquires all of the Public Properties,
Methods and Fields defined for its Base Class unless it replaces them with its own
members of the same name. This principle of inheritance applies throughout the
Class hierarchy. Note that Private members are not subject to inheritance.

Warning: When a class is fixed, it keeps a reference (a pointer) to its base class. If the
global name of the base class is expunged, the derived class will still have the base
class reference, and the base class will therefore be kept alive in the workspace. The
derived class will be fully functional, but attempts to edit it will fail when it attempts
to locate the base class as the new definition is fixed.

At this point, if a new class with the original base class name is created, the derived
class has no way of detecting this, and it will continue to use the old and invisible
version of the base class. Only when the derived class is re-fixed, will the new base
class be detected.

If you edit, re-fix or copy an existing base class, APL will take care to patch up the
references, but if the base class is expunged first and recreated later, APL is unable to
detect the substitution. You can recover from this situation by editing or re-fixing the
derived class(es) after the base class has been substituted.

Classes that derive from .Net Types

You may define a Class that derives from any of the .Net Types by specifying the
name of the .Net Type and including a : USING statement that provides a path to the
Net Assembly in which the Net Type is located.

Example

:Class APLGreg: GregorianCalendar
:Using System.Globalization

;éﬁdClass

Chapter 3: Object Oriented Programing 143

Classes that derive from the Dyalog GUI

You may define a Class that derives from any of the Dyalog APL GUI objects by
specifying the name of the Dyalog APL GUI Class in quotes.

For example, to define a Class named Duck that derives froma Po Ll y object, the
Class specification would be:

:Class Duck:'Poly'
:EndClass

The Base Constructor for such a Class is the [JWC system function.

Instances

A Class is generally used as a blueprint or model from which one or more Instances
ofthe Class are constructed. Note however that a class can have Shared members
which can be used directly without first creating an instance.

You create an instance of a Class using the INEW system function which is monadic.

The 1-or 2-item argument to [JNEW contains a reference to the Class and, optionally,
arguments for its Constructor function.

When [INEW executes, it creates a regular APL namespace to contain the Instance,
and within that it creates an Instance space, which is populated with any Instance
Fields defined by the class (with default values if specified), and pointers to the
Instance Method and Property definitions specified by the Class.

If a monadic Constructor is defined, it is called with the arguments specified in the
second item of the argument to ONEW. IF[INEW was called without Constructor argu-
ments, and the class has a niladic Constructor, this is called instead.

The Constructor function is typically used to initialise the instance and may estab-
lish variables in the instance namespace.

The result of INEW is a reference to the instance namespace. Instances of Classes
exhibit the same set of Properties, Methods and Fields that are defined for the Class.

144 Dyalog APL/W Programmer's Guide & Language Reference

Constructors

A Constructor is a special function defined in the Class script that is to be run when
an Instance of the Class is created by ONEW. Typically, the job of a Constructor is to
initialise the new Instance in some way.

A Constructor is identified by a : Implements Constructor statement. This
statement may appear anywhere in the body of the function after the function header.
The significance of this is discussed below.

Note that it is also essential to define the Constructor to be Public, witha : Access
Pub L i c statement, because like all Class members, Constructors default to being Pri-
vate. Private Constructors currently have no use or purpose, but it is intended that
they will be supported in a future release of Dyalog APL.

A Constructor function may be niladic or monadic and must not return a result.

A Class may specify any number of different Constructors of which one (and only
one) may be niladic. This is also referred to as the default Constructor.

There may be any number of monadic Constructors, but each must have a differently
defined argument list which specifies the number of items expected in the Con-
structor argument. See "Constructor Overloading" on page 145 for details.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Con-
structor function may be invoked is by ONEW. See "Base Constructors" on page 152
for further details.

When [ONEW is executed with a 2-item argument, the appropriate monadic Con-
structor is called with the second item of the ONEW argument.

The niladic (default) Constructor is called when [INEW is executed with a 1-item argu-
ment, a Class reference alone, or whenever APL needs to create a fill item for the
Class.

Note that (JNEW first creates a new instance of the specified Class, and then executes
the Constructor inside the instance.

Example

The DomesticParrot Class defines a Constructor function egg that initialises
the Instance by storing its name (supplied as the 219 item of the argument to INEW)
in a Public Field called Name.

Chapter 3: Object Oriented Programing 145

:Class DomesticParrot:Parrot
:Field Public Name

V egg name
:Implements Constructor
tAccess Public
Name<name

\'4

:Endéiéss A DomesticParrot

pol<[INEW DomesticParrot 'Polly’
pol.Name
Polly

Constructor Overloading

NameList header syntax is used to define different versions of a Constructor each
with a different number of parameters, referred to as its signature. See"Namelists" on
page 68 for details. The Clover Class illustrates this principle.

In deciding which Constructor to call, APL matches the shape of the Constructor
argument with the signature of each of the Constructors that are defined. If a con-
structor with the same number of arguments exists (remembering that 0 arguments
will match a niladic Constructor), it is called. If there is no exact match, and there is a
Constructor with a general signature (an un-parenthesised right argument), it is
called. If no suitable constructor is found, a LENGTH ERROR is reported.

There may be one and only one constructor with a particular signature.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class. The only way a Con-
structor function may be invoked is by [INEW. See "Base Constructors" on page 152
for further details.

In the Clover Class example Class, the following Constructors are defined:

Constructor Implied argument
Makel I-item vector
Make2 2-item vector
Make3 3-item vector
MakeO No argument
MakeAny Any array accepted

146 Dyalog APL/W Programmer's Guide & Language Reference

Clover Class Example

:Class Clover A Constructor Overload Example
:Field Public Con
vV MakeO
:Access Public
:Implements Constructor
make 0

v Makel(arg)
:Access Public
:Implements Constructor
make arg

vV Make2(argl arg2)
tAccess Public
:Implements Constructor
make argl arg2

vV Make3(argl arg2 arg3)
tAccess Public
:Implements Constructor
make argl arg2 arg3

vV MakeAny args
:Access Public
:Implements Constructor
make args

v

vV make args
Con<«(pargs)(220SI)args

v

:EndClass ma Clover

Chapter 3: Object Oriented Programing 147

In the following examples, the Make function (see Clover Class for details) displays:

<shape of argument> <name of Constructor
called><argument>
(see function make)

Creating a new Instance of Clover with a 1-element vector as the Constructor argu-
ment, causes the system to choose the Make1 Constructor. Note that, although the
argument to Make1 is a 1-element vector, this is disclosed as the list of arguments is
unpacked into the (single) variable arg1.

(ONEW Clover(,1)).Con
Makel 1

Creating a new Instance of Clover with a 2- or 3-element vector as the Constructor
argument causes the system to choose Make2, or Make 3 respectively.

(ONEW Clover(1 2)).Con
2 Make2 1 2

(ONEW Clover(1 2 3)).Con
3 Make3d 1 2 3

Creating an Instance with any other Constructor argument causes the system to
choose MakeAny.

(ONEW Clover(i10)).Con
10 MakeAny 1 2 3 456 7 8 9 10
(ONEW Clover(2 2pi4)).Con
2 2 MakeAny 1 2
3 4

Note that a scalar argument will call MakeAny and not Makel.

(ONEW Clover 1).Con
MakeAny 1

and finally, creating an Instance without a Constructor argument causes the system to
choose MakeO.

(ONEW Clover).Con
MakeO O

148 Dyalog APL/W Programmer's Guide & Language Reference

Niladic (Default) Constructors

A Class may define a niladic Constructor and/or one or more Monadic Constructors.
The niladic Constructor acts as the default Constructor that is used when [ONEW is
invoked without arguments and when APL needs a fill item.

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
Species<«spec

default

:Access Public Instance
:Implements Constructor
Species«'Default Bird'

<<

<

R«<Speak

:Access Public
R«'Tweet, tweet!'
\'4

:EndClass A Bird

The niladic Constructor (in this example, the function def aul t) is invoked when
[NEW is called without Constructor arguments. In this case, the Instance created is no
different to one created by the monadic Constructor egg, except that the value of the
Species Fieldissetto 'Default Bird'.

Birdy<[NEW Bird
Birdy.Species
Default Bird

The niladic Constructor is also used when APL needs to make a fill item of the Class.
For example, in the expression (31Birdy), APL has to create two fill items of
Birdy (one for each of the elements required to pad the array to length 3) and will in
fact call the niladic Constructor twice.

In the following statement:

TweetyPie«3210tBirdy

Chapter 3: Object Oriented Programing 149

The 101 (temporarily) creates a 10-element array comprising the single entity
Birdy padded with 9 fill-clements of Class B i rd. To obtain the 9 fill-elements,
APL calls the niladic Constructor 9 times, one for each separate prototypical Instance
that it is required to make.

TweetyPie.Species
Default Bird

Empty Arrays of Instances: Why ?

In APL it is natural to use arrays of Instances. For example, consider the following
example.

:Class Cheese

:Field Public Name<«''

:Field Public Strength<«®

vV make2(name strength)
:Access Public
:Implements Constructor
Name Strength<name strength

v

V makel name
tAccess Public
:Implements Constructor
Name Strength<name 1

v

V make_excuse
tAccess Public
:Implements Constructor
O«'The cat ate the last one!'

v
:EndClass
We might create an array of Instances of the Cheese Class as follows:

cdata<«('Camembert' 5)('Caephilly' 2) 'Mild Cheddar'
cheeses<{[INEW Cheese w} 'cdata

Suppose we want a range of medium-strength cheese for our cheese board.

board«(cheeses.Strength<3)/cheeses
board.Name
Caephilly Mild Cheddar

But look what happens when we try to select really strong cheese:

board«(cheeses.Strength>5)/cheeses
board.Name
The cat ate the last one!

150 Dyalog APL/W Programmer's Guide & Language Reference

Note that this message is not the result of the expression, but was explicitly dis-
played by the make_excuse function. The clue to this behaviour is the shape of
board; itis empty!

pboard
0

When a reference is made to an empty array of Instances (strictly speaking, a ref-
erence that requires a prototype), APL creates a new Instance by calling the niladic
(default) Constructor, uses the new Instance to satisfy the reference, and then discards
it. Hence, in this example, the reference:

board.Name
caused APL to run the niladic Constructormake_excuse, which displayed:
The cat ate the last one!

Notice that the behaviour of empty arrays of Instances is modelled VERY closely
after the behaviour of empty arrays in general. In particular, the Class designer is
given the task of deciding what the types of the members of the prototype are.

Empty Arrays of Instances: How?

To cater for the need to handle empty arrays of Instances as easily as non-empty
arrays, a reference to an empty array of Class Instances is handled in a special way.

Whenever a reference or an assignment is made to the content of an empty array of
Instances, the following steps are performed:

1. APL creates a new Instance of the same Class of which the empty Instance
belongs.
2. the default (niladic) Constructor is run in the new Instance
3. the appropriate value is obtained or assigned:
o ifit is a reference is to a Field, the value of the Field is obtained
o ifit is a reference is to a Property, the PropertyGet function is run
o ifit is a reference is to a Method, the method is executed
o ifit is an assignment, the assignment is performed or the PropertySet
function is run
4. if it is a reference, the result of step 3 is used to generate an empty result
array with a suitable prototype by the application of the function {Opcw}
to it
5. the Class Destructor (if any) is run in the new Instance
6. the New Instance is deleted

Chapter 3: Object Oriented Programing 151

Example

:Class Bird
:Field Public Species

V egg spec
:Access Public Instance
:Implements Constructor
(DF Species<«spec

<«

default

:Access Public Instance
:Implements Constructor
ODF Species<«'Default Bird'
#.DISPLAY Species

<«

R«<Speak

tAccess Public

#.DISPLAY R<«'Tweet, Tweet, Tweet'
\'4

:EndClass ma Bird

First, we can create an empty array of Instances of Bird using Op.
Empty<Op[ONEW Bird 'Robin'

A reference to Empty.Species causes APL to create a new Instance and invoke
the niladic Constructor defaul t. This function sets Species to 'Default
Bird'and calls #.DISPLAY which displays output to the Session.

DISPLAY Empty.Species

D —————— ———

|Default Bird]

APL then retrieves the value of Species ('Default Bird'),applies the func-
tion {Opcw} to it and returns this as the result of the expression.

A reference to Empty . Speak causes APL to create a new Instance and invoke the
niladic Constructor defaul t. This function sets Species to 'Default
Bird'and calls#.DISPLAY which displays output to the Session.

152 Dyalog APL/W Programmer's Guide & Language Reference

DISPLAY Empty.Speak

APL then invokes function Speak which displays ' Tweet, Tweet, Tweet'
and returns this as the result of the function.

APL then applies the function {Opcw} to it and returns this as the result of the
expression.

Base Constructors

Constructors in a Class hierarchy are not inherited in the same way as other members.
However, there is a mechanism for all the Classes in the Class inheritance tree to par-
ticipate in the initialisation of an Instance.

Every Constructor function containsa: Implements Constructor statement
which may appear anywhere in the function body. The statement may optionally be
followed by the : Base control word and an arbitrary expression.

The statement:
:Implements Constructor :Base expr

calls a monadic Constructor in the Base Class. The choice of Constructor depends
upon the rank and shape of the result of expr (see "Constructor Overloading" on
page 145 for details).

Whereas, the statement:
:Implements Constructor
or
:Implements Constructor :Base

calls the niladic Constructor in the Base Class.

Chapter 3: Object Oriented Programing 153

Note that during the instantiation of an Instance, these calls potentially take place in
every Class in the Class hierarchy.

If, anywhere down the hierarchy, there is a monadic call and there is no matching
monadic Constructor, the operation fails with a LENGTH ERROR.

If there is a niladic call on a Class that defines no Constructors, the niladic call is
simply repeated in the next Class along the hierarchy.

However, if a Class defines a monadic Constructor and no niladic Constructor it
implies that that Class cannot be instantiated without Constructor arguments.
Therefore, if there is a call to a niladic Constructor in such a Class, the operation fails
with a LENGTH ERROR. Note that it is therefore impossible for APL to instantiate a
fill item or process a reference to an empty array for such a Class or any Class that is
based upon it.

A Constructor function may not call another Constructor function and a constructor
function may not be called directly from outside the Class or Instance. The only way
a Constructor function may be invoked is by [JNEW. The fundamental reason for these
restrictions is that there must be one and only one call on the Base Constructor when
a new Instance is instantiated. If Constructor functions were allowed to call one
another, there would be several calls on the Base Constructor. Similarly, if a Con-
structor could be called directly it would potentially duplicate the Base Constructor
call.

154 Dyalog APL/W Programmer's Guide & Language Reference

Niladic Example

In the following example, DomesticParrot isderived from Parrot which is
derived from B1i rd. They all share the Field De s c (inherited from B i rd). Each of
the 3 Classes has its own niladic Constructor called eggO.

:Class Bird
:Field Public Desc
vV egg0
:Access Public
:Implements Constructor
Desc<«'Bird'
\'4
:EndClass A Bird

:Class Parrot: Bird
vV egg0
tAccess Public
:Implements Constructor
Desc,«'»Parrot'
\'4
tEndClass A Parrot

:Class DomesticParrot: Parrot
vV egg0
tAccess Public
:Implements Constructor
Desc,«'>DomesticParrot'
\'4
:EndClass A DomesticParrot

(ONEW DomesticParrot).Desc
Bird-Parrot-DomesticParrot

Explanation

OONEW creates the new instance and runs the niladic Constructor
DomesticParrot.egg0. Assoon as the line:

:Implements Constructor

is encountered, ONEW calls the niladic constructor in the Base Class Parrot.egg0
Parrot.egg0 starts to execute and as soon as the line:

:Implements Constructor

is encountered, [INEW calls the niladic constructor in the Base Class Bird.eggO0.

Chapter 3: Object Oriented Programing 155

When the line:
:Implements Constructor

is encountered, ONEW cannot call the niladic constructor in the Base Class (there is
none) so the chain of Constructors ends. Then, as the State Indicator unwinds ...

Bird.egg0 executes |Desc<«'Bird''
Parrot.egg0 executes |Desc,«'»Parrot''
DomesticParrot.egg0 execute |Desc,«'»DomesticParrot''

Monadic Example

In the following example, DomesticParrot is derived from Parrot which is
derived from B i rd. They all share the Field Species (inherited from B i rd) but
only aDomesticParrot hasa Field Name. Each of the 3 Classes has its own Con-
structor called egg.

:Class Bird
:Field Public Species
V egg spec
:Access Public Instance
:Implements Constructor
Species<«spec
v

:Endé[éss A Bird

:Class Parrot: Bird
V egg species
:Access Public Instance
:Implements Constructor :Base 'Parrot: ',species
v

:Endé[éss A Parrot

:Class DomesticParrot: Parrot
:tField Public Name
V egg(name species)
tAccess Public Instance
:Implements Constructor :Base species
[ODF Name<name
\'4

:Endé[éss A DomesticParrot

156 Dyalog APL/W Programmer's Guide & Language Reference

pol<[INEW DomesticParrot('Polly' 'Scarlet Macaw')
pol.Name

Polly
pol.Species

Parrot: Scarlet Macaw

Explanation

[ONEW creates the new instance and runs the Constructor DomesticParrot.egg.
The egg header splits the argument into two items name and species. Assoon as
the line:

:Implements Constructor :Base species

is encountered, (ONEW calls the Base Class constructor Parrot . egg, passing it the
result of the expression to the right, which in this case is simply the value in
species.

Parrot.egg starts to execute and as soon as the line:
:Implements Constructor :Base 'Parrot: ',species

is encountered, [INEW calls its Base Class constructor Bird.egg, passing it the
result of the expression to the right, which in this case is the character vector
'Parrot: ' catenated with the value in species.

Bird.egg assigns its argument to the Public Field Species
At this point, the State Indicator would be:

)SI
[#.[Instance of DomesticParrot]] #.Bird.egg[3]*
[constructor]
:base
[#.[Instance of DomesticParrot]] #.Parrot.egg[2]
[constructor]
tbase
[#.[Instance of DomesticParrot]] #.DomesticParrot.egg[2]
[constructor]

Bird.eggthenreturnsto Parrot.egg which returns to
DomesticParrot.egg

Finally, DomesticParrot.egg[3] isexecuted, which establishes Field Name
and the Display Format ((JDF) for the instance.

Chapter 3: Object Oriented Programing 157

Destructors

A Destructor is a function that is called just before an Instance of a Class ceases to
exist and is typically used to close files or release external resources associated with
an Instance.

An Instance of a Class is destroyed when:

e The Instance is expunged using JEX or) ERASE.
e A function, in which the Instance is localised, exits.

But be aware that a destructor will also be called if:

e The Instance is re-assigned (see below)

o The result of JNEW is not assigned (the instance gets created then imme-
diately destroyed).

e APL creates (and then destroys) a new Instance as a result of a reference to a
member of an empty Instance. The destructor is called after APL has
obtained the appropriate value from the instance and no longer needs it.

e The constructor function fails. Note that the Instance is actually created
before the constructor is run (inside it), and if the constructor fails, the fledg-
ling Instance is discarded. Note too that this means a destructor may need to
deal with a partially constructed instance, so the code may need to check

that resources were actually acquired, before releasing them.
e On the execution of)CLEAR,)LOAD, [JLOAD,)OFF or [JOFF.

Note that an Instance of a Class only disappears when the /ast reference to it dis-
appears. For example, the sequence:

I1<[INEW MyClass
I2«I1
JERASE It

will not cause the Instance of MyClass to disappear because it is still referenced by
I2.

A Destructor is identified by the statement : Imp lements Destructor which
must appear immediately after the function header in the Class script.

:Class Parrot
v kill
:Implements Destructor

'This Parrot is dead'
\'4

:Endé[éss A Parrot

158

Dyalog APL/W Programmer's Guide & Language Reference

pol<[JNEW Parrot 'Scarlet Macaw'
JERASE pol
This Parrot is dead

Note that reassignment to po | causes the Instance referenced by pol to be destroyed
and the Destructor invoked:

pol<[INEW Parrot 'Scarlet Macaw'
pol<[ONEW Parrot 'Scarlet Macaw'
This Parrot is dead

If a Class inherits from another Class, the Destructor in its Base Class is automatically
called after the Destructor in the Class itself.

So, if we have a Class structure:
DomesticParrot => Parrot => Bird
containing the following Destructors:
:Class DomesticParrot: Parrot
v kill
:Implements Destructor

'This ', (s0THIS),' is dead'
\'4

:EndCié;s A DomesticParrot
:Class Parrot: Bird
v kill
:Implements Destructor
‘This Parrot is dead'
\'
:Endéiéss A Parrot
:Class Bird
vV kill
:Implements Destructor
'This Bird is dead'
\'4

:Endéiéss A Bird

Chapter 3: Object Oriented Programing 159

Destroying an Instance of DomesticParrot will run the Destructors in
DomesticParrot,Parrot and Bird and in that order.

pol<[INEW DomesticParrot

)CLEAR
This Polly is dead
This Parrot is dead
This Bird is dead
clear ws

160

Dyalog APL/W Programmer's Guide & Language Reference

Class Members

A Class may contain Methods, Fields and Properties (commonly referred to together
as Members) which are defined within the body of the Class script or are inherited
from other Classes.

Methods are regular APL defined functions, but with some special characteristics
that control how they are called and where they are executed. D-fns may not be used
as Methods.

Fields are just like APL variables. To get the Field value, you reference its name; to
set the Field value, you assign to its name, and the Field value is stored in the Field.
However, Fields differ from variables in that they possess characteristics that control
their accessibility.

Properties are similar to APL variables. To get the Property value, you reference its
name; to set the Property value, you assign to its name. However, Property values are
actually accessed via PropertyGet and PropertySet functions that may perform all
sorts of operations. In particular, the value of a Property is not stored in the Property
and may be entirely dynamic.

All three types of member may be declared as Public or Private and as Instance or
Shared.

Public members are visible from outside the Class and Instances of the Class, whereas
Private members are only accessible from within.

Instance Members are unique to every Instance of the Class, whereas Shared
Members are common to all Instances and Shared Members may be referenced
directly on the Class itself.

Chapter 3: Object Oriented Programing 161

Fields

A Field behaves just like an APL variable.

To get the value of a Field, you reference its name; to set the value ofa Field, you
assign to its name. Conceptually, the Field value is stored in the Field. However,
Fields differ from variables in that they possess characteristics that control their acces-
sibility.

A Field may be declared anywhere in a Class script by a : F i e L d statement. This
specifies:

the name of the Field

whether the Field is Public or Private
whether the Field is Instance or Shared
whether or not the Field is ReadOnly
optionally, an initial value for the Field.

Note that Triggers may be associated with Fields. See "Trigger Fields" on page 165
for details.

Public Fields

A Public Field may be accessed from outside an Instance or a Class. Note that the
default is Private.

Class DomesticParrot hasa Name Field which is defined to be Public and
Instance (by default).

:Class DomesticParrot: Parrot
:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

\'4

:EndClass n DomesticParrot
The Name field is initialised by the Class constructor.

pet<[INEW DomesticParrot'Polly'
pet.Name
Polly

The Name field may also be modified directly:

pet.Name<¢pet.Name
pet.Name
ylloP

162 Dyalog APL/W Programmer's Guide & Language Reference

Initialising Fields
A Field may be assigned an initial value. This can be specified by an arbitrary expres-
sion that is executed when the Class is fixed by the Editor or by OF IX.

:Class DomesticParrot: Parrot
:Field Public Name
:Field Public Talks<«1

V egg nm
:Access Public
:Implements Constructor

Name<«nm
\'4

:Endéiéss A DomesticParrot
Field Tal ks will be initialised to 1 in every instance of the Class.
pet<[INEW DomesticParrot 'Dicky'

pet.Talks

1
pet.Name

Dicky
Note that if a Field is ReadOnly, this is the only way that it may be assigned a value.

See also: "Shared Fields" on page 164.

Chapter 3: Object Oriented Programing 163

Private Fields

A Private Field may only be referenced by code running inside the Class or an
Instance of the Class. Furthermore, Private Fields are not inherited.

The ComponentFile Class (see page 177) has a Private Instance Field named tie
that is used to store the file tie number in each Instance of the Class.

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
tAccess Public Instance
:Trap O
tie<filename OFTIE O
:Else
tie«filename [FCREATE O
:EndTrap
ODOF filename, '(Component File)'
\'4

As the field is declared to be Private, it is not accessible from outside an Instance of
the Class, but is only visible to code running inside.

F1«<[INEW ComponentFile 'testi'
Fl.tie

VALUE ERROR
Fl.tie

A

164 Dyalog APL/W Programmer's Guide & Language Reference

Shared Fields

Ifa Field is declared to be Shared, it has the same value for every Instance of the
Class. Moreover, the Field may be accessed from the Class itself; an Instance is not
required.

The following example establishes a Shared Field called Months that contains
abbreviated month names which are appropriate for the user's current International
settings. It also shows that an arbitrarily complex statement may be used to initialise
a Field.

:Class Example

:Using System.Globalization

:Field Public Shared ReadOnly Months<«12+ ([ONEW
DateTimeFormatInfo).AbbreviatedMonthNames
:EndClass A Example

A Shared Field is not only accessible from an instance...

EG<[INEW Example
EG.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

... but also, directly from the Class itself.

Example.Months
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Notice that in this case it is necessary to insert a : Us i ng statement (or the equiv-
alent assignment to JUSING) in order to specify the .Net search path for the Date-
TimeFormatInfo type. Without this, the Class would fail to fix.

You can see how the assignment works by executing the same statements in the Ses-
sion:

[JUSING<«'System.Globalization'
12+ ([NEW DateTimeFormatInfo).AbbreviatedMonthNames
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

Chapter 3: Object Oriented Programing 165

Trigger Fields

A field may act as a Trigger so that a function may be invoked whenever the value of
the Field is changed.

As an example, it is often useful for the Display Form of an Instance to reflect the
value of a certain Field. Naturally, when the Field changes, it is desirable to change
the Display Form. This can be achieved by making the Field a Trigger as illustrated
by the following example.

Notice that the Trigger function is invoked both by assignments made within the
Class (as in the assignment in ctor) and those made from outside the Instance.

:Class MyClass
tField Public Name
:Field Public Country«'England’
V ctor nm
tAccess Public
:Implements Constructor
Name<nm
v
vV format
:Implements Trigger Name,Country
[ODF 'My name is ',Name,' and I live in ',Country
v
:EndClass A MyClass

me<«[INEW MyClass 'Pete’
me
My name is Pete and I live in England

me.Country<«'Greece’
me
My name is Pete and I live in Greece

me.Name<«'Kostas'
me
My name is Kostas and I live in Greece

166 Dyalog APL/W Programmer's Guide & Language Reference

Methods

Methods are implemented as regular defined functions, but with some special attrib-
utes that control how they are called and where they are executed.

A Method is defined by a contiguous block of statements in a Class Script. A
Method begins with a line that contains a v, followed by a valid APL defined func-
tion header. The method definition is terminated by a closing V.

The behaviour of a Method is defined by an : Access control statement.

Public or Private
Methods may be defined to be Private (the default) or Public.

A Private method may only be invoked by another function that is running inside the
Class namespace or inside an Instance namespace. The name of a Private method is
not visible from outside the Class or an Instance of the Class.

A Public method may be called from outside the Class or an Instance of the Class.

Instance or Shared
Methods may be defined to be Instance (the default) or Shared.

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both Pri-
vate and Public, in the Instance in which it runs.

A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not have
direct access to the Fields and Properties of that Instance.

Shared methods are typically used to manipulate Shared Properties and Fields or to
provide general services for all Instances that are not Instance specific.

Overridable Methods
Instance Methods may be declared with : Access Overridable.

A Method declared as being Overridable is replaced in situ (i.e. within its own Class)
by a Method of the same name that is defined in a higher Class which itself'is
declared with the Override keyword. See "Superseding Base Class Methods" on page
169.

Chapter 3: Object Oriented Programing 167

Shared Methods

A Shared method runs in the Class namespace and may be called via an Instance or
via the Class. However, a Shared method that is called via an Instance does not have
direct access to the Fields and Properties of that Instance.

Class Parrot has a Speak method that does not require any information about the
current Instance, so may be declared as Shared.

:Class Parrot:Bird

V R«<Speak times
tAccess Public Shared
R«stimespc'Squark!"’

v

:EndClass A Parrot

wild<[JNEW Parrot
wild.Speak 2
Squark! Squark!

Note that Parrot . Speak may be executed directly from the Class and does not in
fact require an Instance.

Parrot.Speak 3
Squark! Squark! Squark!

168 Dyalog APL/W Programmer's Guide & Language Reference

Instance Methods

An Instance method runs in the Instance namespace and may only be called via the
instance itself. An Instance method has direct access to Fields and Properties, both Pri-
vate and Public, in the Instance in which it runs.

Class DomesticParrot hasa Speak method defined to be Public and Instance.
Where Speak refers to Name, it obtains the value of Name in the current Instance.

Note too that DomesticParrot.Speak supersedes the inherited
Parrot.Speak.

:Class DomesticParrot: Parrot

:Field Public Name

V egg nm
:Access Public
:Implements Constructor
Name<nm

\'

V R«Speak times

tAccess Public Instance

R<cName, ', ',Name

R<tR,timespc' Who''s a pretty boy, then!'
\'4

tEndClass A DomesticParrot

pet<[INEW DomesticParrot'Polly'

pet.Speak
Polly, Polly
Who's a pretty
Who's a pretty
Who's a pretty

bi L«<[INEW

bil.Speak
Billy, Billy
Who's a pretty

3

then!
then!
then!

boy,
boy,
boy,

DomesticParrot'Billy'
1

boy, then!

Chapter 3: Object Oriented Programing 169

Superseding Base Class Methods

Normally, a Method defined in a higher Class supersedes the Method of the same
name that is defined in its Base Class, but only for calls made from above or within
the higher Class itself (or an Instance of the higher Class). The base method remains
available in the Base Class and is invoked by a reference to it from within the Base
Class. This behaviour can be altered using the Overridable and Override key words
in the : Access statement but only applies to Instance Methods.

If a Public Instance method in a Class is marked as Overridable, this allows a Class
which derives from the Class with the Overridable method to supersede the Base
Class method in the Base Class, by providing a method which is marked Override.
The typical use of this is to replace code in the Base Class which handles an event,
with a method provided by the derived Class.

For example, the base class might have a method which is called if any error occurs
in the base class:

V ErrorHandler
[1] :Access Public Overridable
[2] O«t0DM

\'4

In your derived class, you might supersede this by a more sophisticated error handler,
which logs the error to a file:

V ErrorHandler;TN
[1] :Access Public Override
[2] O«t0DM
[3] TN<'ErrorLog'OFSTIE O
[4] (OOM OFAPPEND TN
[5] OFUNTIE TN

Ifthe derived class had a function which was not marked Override, then function in
the derived class which called ErrorHandler would call the function as defined
in the derived class, but if a function in the base class called ErrorHandler, it
would still see the base class version of this function. With Override specified, the
new function supersedes the function as seen by code in the base class. Note that dif-
ferent derived classes can specify different Overrides.

In C#, Java and some other compiled languages, the term Virtual is used in place of
Overridable, which is the term used by Visual Basic and Dyalog APL.

170 Dyalog APL/W Programmer's Guide & Language Reference

Properties

A Property behaves in a very similar way to an ordinary APL variable. To obtain the
value of a Property, you simply reference its name. To change the value of a Property,
you assign a new value to the name.

However, under the covers, a Property is accessed via a PropertyGet function and its
value is changed via a PropertySet function. Furthermore, Properties may be defined
to allow partial (indexed) retrieval and assignment to occur.

There are three types of Property, namely Simple, Numbered and Keyed.

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices. The Numbered
Property is designed to allow APL to perform selections and structural operations on
the Property.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

The following cases illustrate the difference between Simple and Numbered Prop-
erties.

If Instance My Inst hasa Simple Property Sprop and a Numbered Property Nprop,
the expressions

X«MyInst.SProp
X«MyInst.SProp[2]

both cause APL to call the PropertyGet function to retrieve the entire value of
Sprop. The second statement subsequently uses indexing to extract just the second
element of the value.

Whereas, the expression:
X+«MyInst.NProp[2]

causes APL to call the PropertyGet function with an additional argument which spec-
ifies that only the second element of the Property is required. Moreover, the expres-
sion:

X«MyInst.NProp

Chapter 3: Object Oriented Programing 17

causes APL to call the PropertyGet function successively, for every element of the
Property.

A Property is defined by a :Property ... :EndProperty sectionin a Class
Script.

Within the body of a Property Section there may be:

e one or more :Access statements which must appear first in the body of
the Property.

e a single PropertyGet function.

e a single PropertySet function

e a single PropertyShape function

Simple Instance Properties

A Simple Instance Property is one whose value is accessed (by APL) in its entirety
and re-assigned (by APL) in its entirety. The following examples are taken from the
ComponentFile Class (see page 177).

The Simple Property Count returns the number of components on a file.

:Property Count
:Access Public Instance
V r<get
r< 1+2>[JFSIZE tie

v
:EndProperty A Count

F1<[INEW ComponentFile 'testt'
F1.Append'Hello World'

1
F1.Count
1
F1.Append 42
2
F1.Count
2

Because there is no set function defined, the Property is read-only and attempting
to change it causes SYNTAX ERROR.

F1.Count«99
SYNTAX ERROR
F1.Count«99

A

172 Dyalog APL/W Programmer's Guide & Language Reference

The Access Property has both get and set functions which are used, in this sim-
ple example, to get and set the component file access matrix.

:Property Access
tAccess Public Instance
V r<get
r<[JFRDAC tie
v
vV set am;mat;OK
mat«am.NewValue
:Trap O
OK<(2=ppmat)~(3=25pmat)**/,mat=[mat
tElse
0K<«0
:EndTrap
'bad arg'0SIGNAL(~OK)/11
mat OFSTAC tie
v
:EndProperty A Access

Note that the set function must be monadic. Its argument, supplied by APL, will be
an Instance of PropertyArguments. This is an internal Class whose NewVa lue
field contains the value that was assigned to the Property.

Note that the set function does not have to accept the new value that has been
assigned. The function may validate the value reject or accept it (as in this example),
or perform whatever processing is appropriate.

F1<[ONEW ComponentFile 'testt’
pFl.Access

F1.Access«3 3p28 2105 16385 0 2073 16385 31 "1 O
F1.Access
28 2105 16385
0 2073 16385
31 -1 0

Fi1.Access<«'junk'
bad arg

Fi1.Access«'junk'
A

F1.Access«1 2p10
bad arg
F1.Access«1 2p10

A

Chapter 3: Object Oriented Programing 173

Simple Shared Properties

The ComponentFile Class (see page 177) specifies a Simple Shared Property named
F i Les which returns the names of all the Component Files in the current directory.

The previous examples have illustrated the use of Instance Properties. It is also pos-
sible to define Shared properties.

A Shared property may be used to handle information that is relevant to the Class as
awhole, and which is not specific to any a particular Instance.

:Property Files
:Access Public Shared
V r<get
r<QFLIB"'

v
:EndProperty

Note that JFLIB (invoked by the Fi les get function) does not report the names
oftied files.

F1<[ONEW ComponentFile 'testi'

Oex'F1'

F2<[INEW ComponentFile 'test2'

F2.Files A NB OFLIB does not report tied files
testt

Oex'F2'

Note that a Shared Property may be accessed from the Class itself. It is not necessary

to create an Instance first.

ComponentFile.Files
test!t
test2

174 Dyalog APL/W Programmer's Guide & Language Reference

Numbered Properties

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

To implement a Numbered Property, you must specify a PropertyShape function and
either or both a PropertyGet and PropertySet function.

When an expression references or makes an assignment to a Numbered Property, APL
first calls its PropertyShape function which returns the dimensions of the Property.
Note that the shape of the result of this function determines the rank of the Property.

If the expression uses indexing, APL checks that the index or indices are within the
bounds of these dimensions, and then calls the PropertyGet or PropertySet function.
Ifthe expression specifies a single index, APL calls the PropertyGet or PropertySet
function once. If the expression specifies multiple indices, APL calls the function suc-
cessively.

Ifthe expression references or assigns the entire Property (without indexing) APL
generates a set of indices for every element of the Property and calls the PropertyGet
or PropertySet function successively for every element in the Property.

Note that APL generates a RANK ERROR if an index contains the wrong number of
elements oran INDEX ERROR ifan index is out of bounds.

When APL calls a monadic PropertyGet or PropertySet function, it supplies an argu-
ment of type Property Arguments.

Example

The ComponentFile Class (see page 177) specifies a Numbered Property named
Component which represents the contents of a specified component on the file.

:Property Numbered Component
:Access Public Instance
V r<shape
r< 1+250FSIZE tie
v
V r<«get arg
r<[JFREAD tie arg.Indexers
v
V set arg
arg.NewValue [JFREPLACE tie,arg.Indexers

v
:EndProperty

Chapter 3: Object Oriented Programing 175

F1+<[INEW ComponentFile 'test1l'

F1.Append” (15)xcil
12345

F1.Count

F1.Component[4]
L 8 12 16

4>F1.Component
4+ 8 12 16

(e4 3)[F1.Component
4 8 12 16 3 6 9 12

Referencing a Numbered Property in its entirety causes APL to call the get function
successively for every element.

F1.Component
1234 2468 36912 4 812 16 5 10 15 20

((c4 3)[0F1.Component)«'Hello' 'World'

F1.Component[3]
World

Attempting to access a Numbered Property with inappropriate indices generates an
error:

F1.Component[6]

INDEX ERROR
F1.Component[6]
A

F1.Component[1;2]

RANK ERROR
F1.Component[1;2]
A

176 Dyalog APL/W Programmer's Guide & Language Reference

The Default Property

A single Numbered Property may be identified as the Default Property for the Class.
Ifa Class has a Default Property, indexing with the [] primitive functionand [.. .]
indexing may be applied to the Property directly via a reference to the Class or
Instance.

The Numbered Property example of the ComponentFile Class(see page 177) can be
extended by adding the control word Default to the :Property statement for
the Component Property.

Indexing may now be applied directly to the Instance F 1. In essence, F1[n]is
simply shorthand for F1.Component[n] and n[JF 1 is shorthand for
n{JF1.Component

:Property Numbered Default Component
:Access Public Instance
V r<shape
r<-1+2o0FSIZE tie
v
V r<get arg
r«[JFREAD tie arg.Indexers
v
V set arg
arg.NewValue [OFREPLACE tie,arg.Indexers

v
:EndProperty

F1<[ONEW ComponentFile 'testt’
F1.Append”(15)xcil

12345
F1.Count
5
Filu]
4 8 12 16
(4 3)[F1

L 8 12 16 3 6 9 12
((c4 3)0QF1)«'Hello' 'World'
F1[3]

Wor ld

Note however that this feature applies only to indexing.

4oF 1
DOMAIN ERROR
4oF 1

A

Chapter 3: Object Oriented Programing

177

ComponentFile Class

:Class ComponentFile
:Field Private Instance tie

vV Open filename
:Implements Constructor
:Access Public Instance
:Trap O
tie«filename OFTIE O
tElse
tie«<filename [JFCREATE 0
:EndTrap
(DF filename,'(Component File)'

V Close
tAccess Public Instance
OFUNTIE tie

V r<Append data
tAccess Public Instance
r<data [JFAPPEND tie

V Replace(comp data)
:Access Public Instance
data [OFREPLACE tie,comp

:Property Count
tAccess Public Instance
V r<get
r<-1+2o0FSIZE tie
v
:EndProperty A Count

178 Dyalog APL/W Programmer's Guide & Language Reference

Component File Class Example (continued)

:Property Access
tAccess Public Instance
V r<get arg
r«<[JFRDAC tie
v
V set am;mat;OK
mat<am.NewValue
:Trap O
OK«(2=ppmat)~ (3=2>pmat)**/,mat=|mat
tElse
0K<«0
:EndTrap
'bad arg'[OSIGNAL(~OK)/11
mat [FSTAC tie
v
:EndProperty A Access

:Property Files
:Access Public Shared
V r<get
r<QJFLIB"'
v
:EndProperty

:Property Numbered Default Component
:Access Public Instance
V r«shape args
r<-1+2>50FSIZE tie
v
V r<get arg
r<c[JFREAD tie,arg.Indexers
v
V set arg
(oarg.NewValue)FREPLACE tie,arg.Indexers
v
:EndProperty

V Delete filestie
:Access Public Shared
tie«file OFTIE O
file OFERASE tie
\'4
:EndClass A Class ComponentFile

Chapter 3: Object Oriented Programing 179

Keyed Properties

A Keyed Property is similar to a Numbered Property except that it may only be
accessed by indexing (so-called square-bracket indexing) and indices are not
restricted to integers but may be arbitrary arrays.

To implement a Keyed Property, only a get and/ora set function are required. APL
does not attempt to validate or resolve the specified indices in any way, so does not
require the presence of a shape function for the Property.

However, APL does check that the rank and lengths of the indices correspond to the
rank and lengths of the array to the right of the assignment (for an indexed assign-
ment) and the array returned by the get function (for an indexed reference). If the rank
or shape of these arrays fails to conform to the rank or shape of the indices, APL will
issue a RANK ERROR or LENGTH ERROR.

Note too that indices may be elided. f KProp is a Keyed Property of Instance I1,
the following expressions are all valid.

I1.KProp

I1.KProp[l«10
I1.KProp[;]«10
I1.KProp['One' 'Two';]«10
I1.KProp[;'One' 'Two']«10

When APL calls a monadic get ora set function, it supplies an argument of type
Property Arguments, which identifies which dimensions and indices were specified.
See "Property Arguments Class" on page 211.

The Sparse2 Class illustrates the implementation and use of a Keyed Property.

Sparse?2 represents a 2-dimensional sparse array each of whose dimensions are
indexed by arbitrary character keys. The sparse array is implemented as a Keyed Prop-
erty named Values. The following expressions show how it might be used.

SAL1<[INEW Sparse2
SAl.Values[c'Widgets';c'Jan']«100
SA1.Values[c'Widgets';c'Jan']
100
SAl.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
«10x2 3p16
SA1.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']
10 20 30
40 50 60
SAl.Values[c'Widgets';'Jan' 'Oct']
10 30
SA1.Values['Grommets' 'Widgets';c'Oct']
60
30

180 Dyalog APL/W Programmer's Guide & Language Reference

Sparse2 Class Example

:Class Sparse2 A 2D Sparse Array
:Field Private keys
:Field Private values
vV make
tAccess Public
:Implements Constructor
keys(_opcll [}
values<«@
v
:Property Keyed Values
tAccess Public Instance
V v<get arg;k
k«arg.Indexers
OSIGNAL (2#pk) /4
k«<fixkeys k
v<(values,0)[keysik]

V set args;new;k;vsn
v<arg.NewValue
k«arg.Indexers
OSIGNAL (2#pk)/4
k«<fixkeys k
ve(pk) (p*(21=p,v))v
OSIGNAL((pk)#pv)/5
k ve,"k v
:If v/new<~kekeys

values,<«new/v
keys,<new/k
k v/=<c~new
:EndIf
:If 0<pk
values[keystik]«v
tEndIf
\'
:EndProperty

V k«<fixkeys k
k<(22="k){, (c*a)w} 'k
kea(e.{2,/c"a w})/k

v
:EndClass A 2D Sparse Array

Chapter 3: Object Oriented Programing 181

Internally, Sparse2 maintains a list of keys and a list of values which are initialised
to empty arrays by its constructor.

When an indexed assignment is made, the set function receives a list of keys
(indices)in arg.Indexer and valuesin arg.NewValue. The function updates
the values of existing keys, and adds new keys and their values to the internal lists.

When an indexed reference is made, the get function receives a list of keys (indices)
in arg.Indexer. The function uses these keys to retrieve the corresponding
values, inserting Os for non-existent keys.

Note that in the expression:
SAl.Values['Widgets' 'Grommets';'Jan' 'Mar' 'Oct']

the structure of arg.Indexer is:

182 Dyalog APL/W Programmer's Guide & Language Reference

Example

A second example of a Keyed Property is provided by the KeyedF i Le Class which
is based upon the ComponentFile Class (see page 177) used previously.

:Class KeyedFile: ComponentFile
:Field Public Keys
OML<0

vV Open filename

:Implements Constructor :Base filename

tAccess Public Instance

:If Count>0
Keys<«{>w>o[BASE.Component} "tCount

:Else
Keys«0pc'

tEndIf

v

:Property Keyed Component
tAccess Public Instance
V r<get arg;keys;sink
keys<+>arg.Indexers
OSIGNAL(~A/keyseKeys)/3
r<{2>w>[BASE.Component} 'Keystikeys

V set arg;:;new;keys;vals
vals<arg.NewValue
keys<«2arg.Indexers
OSIGNAL((p,keys)#p,vals)/5
:If v/new<~keyseKeys
sink<Append V&t (cnew)/ keys vals
Keys,<new/keys
keys vals/=<«c~new
:EndIf
:If O<p,keys
Replace +&t(Keystikeys) ({&®tkeys vals)
:EndIf
\'4
:EndProperty

:EndClass A Class KeyedFile

Chapter 3: Object Oriented Programing 183

K1<[ONEW KeyedFile 'ktest'
K1.Count

K1.Component[c'Pete']«42
K1.Count

K1.Component['John' 'Geoff']«(110)(3 4pt12)
K1.Count

K1.Component['Geoff' 'Pete']

3 4 42

8

11 12

K1.Component['Pete' 'Morten']«(3 4p'o')(113)
K1.Count

O 01 —
O OoN
~

t orten' 'Pete' 'John']

M
3 cooo 1 23 4567 89 10
3

oooo

[o} ne

P

--0

mponent [
12 11
22 12

- -
N =

o0oo0o0

Interfaces

An Interface is defined by a Script that contains skeleton declarations of Properties
and/or Methods. These members are only place-holders; they have no specific imple-
mentation; this is provided by each of the Classes that support the Interface.

An Interface contains a collection of methods and properties that together represents
a protocol that an application must follow in order to manipulate a Class in a par-
ticular way.

An example might be an Interface called Icompare that provides a single method
(Compare) which compares two Instances of a Class, returning a value to indicate
which of'the two is greater than the other. A Class that implements Icompare must
provide an appropriate Compare method, but every Class will have its own individ-
ual version of Compare. An application can then be written that sorts Instances of
any Class that supports the ICompare Interface.

An Interface is implemented by a Class if it includes the name of the Interface in its
:Class statement, and defines a corresponding set of the Methods and Properties that
are declared in the Interface.

184 Dyalog APL/W Programmer's Guide & Language Reference

To implement a Method, a function defined in the Class must include a
:Implements Method statement that maps it to the corresponding Method
defined in the Interface:

:Implements Method <InterfaceName.MethodName>

Furthermore, the syntax of the function (whether it be result returning, monadic or
niladic) must exactly match that of the method described in the Interface. The func-
tion name, however, need not be the same as that described in the Interface.

Similarly, to implement a Property the type (Simple, Numbered or Keyed) and syntax
(defined by the presence or absence of a PropertyGet and PropertySet functions) must
exactly match that of the property described in the Interface. The Property name, how-
ever, need not be the same as that described in the Interface.

Penguin Class Example

The Penguin Class example illustrates the use of Interfaces to implement multiple
inheritance.

:Interface FishBehaviour

V R«<Swim A Returns description of swimming capability
\'4

tEndInterface A FishBehaviour

:Interface BirdBehaviour
V R<Fly A Returns description of flying capability

v

V R«Lay A Returns description of egg-laying behaviour
v

V R«<Sing A Returns description of bird-song

v

:EndInterface A BirdBehaviour

Chapter 3: Object Oriented Programing 185

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
V R<NoCanFly
:Implements Method BirdBehaviour.Fly
R«'Although I am a bird, I cannot fly'

vV R«LayOneEgg
:Implements Method BirdBehaviour.Lay
R«'I lay one egg every year'

v

V R<«Croak
:Implements Method BirdBehaviour.Sing
R«<'Croak, Croak!'

v

V R«Dive
:Implements Method FishBehaviour.Swim
R«'I can dive and swim like a fish'

v

:EndClass A Penguin

In this case, the Penguin Class derives from Anima L but additionally supports the
BirdBehaviour and FishBehaviour Interfaces, thereby inheriting members
from both.

Pingo<[NEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [OCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [OCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [OCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [JCLASS Pingo).Sing
Croak, Croak!

186 Dyalog APL/W Programmer's Guide & Language Reference

Including Namespaces in Classes

A Class may import methods from one or more plain Namespaces. This allows sev-
eral Classes to share a common set of methods, and provides a degree of multiple
inheritance.

To import methods from a Namespace NS, the Class Script must include a statement:
:Include NS

When the Class is fixed by the editor or by OF IX, all the defined functions and oper-
ators in Namespace NS are included as methods in the Class. The functions and oper-
ators which are brought in as methods from the namespace NS are treated exactly as if
the source of each function/operator had been included in the class script at the point
ofthe : Inc lude statement. For example, if a function contains : Signature or

:Access statements, these will be taken into account. Note that such declarations
have no effect on a function/operator which is in an ordinary namespace.

D-fns and D-ops in NS are also included in the Class but as Private members,
because D-fns and D-ops may not contain : Signature or : Access statements.
Variables and Sub-namespaces in NS are not included.

Note that objects imported in this way are not actually copied, so there is no penalty
incurred in using this feature. Additions, deletions and changes to the functions in
NS are immediately reflected in the Class.

Ifthere is a member in the Class with the same name as a function in NS, the Class
member takes precedence and supersedes the function in NS.

Conversely, functions in NS will supersede members of the same name that are inher-
ited from the Base Class, so the precedence is:

Class supersedes
Included Namespace, supersedes
Base Class

Any number of Namespaces may be included in a Class and the : Inc lude state-
ments may occur anywhere in the Class script. However, for the sake of readability, it
is recommended that you have : Inc lude statements at the top, given that any def-
initions in the script will supersede included functions and operators.

Chapter 3: Object Oriented Programing 187

Example

In this example, Class Pengui n inherits from Animal and includes functions from
the plain Namespaces BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

:EndClass A Penguin

Namespace BirdStuf f contains 2 functions, both declared as Public methods.

:Namespace BirdStuff
V R<Fly
tAccess Public Instance
R<'Fly, Fly ...'
\'4
V R«Lay
tAccess Public Instance
R<'Lay, Lay '
\'4
:EndNamespace A BirdStuff

Namespace FishStuff contains a single function, also declared as a Public
method.

:Namespace FishStuff
V R«<Swim
tAccess Public Instance
R«<'Swim, Swim ...'
\'4
:EndNamespace A FishStuff

Pingo<[IJNEW Penguin
Pingo.Swim

Swim, Swim ...
Pingo.Lay

Lay, Lay ...

Pingo.Fly

Fly, Fly

Dyalog APL/W Programmer's Guide & Language Reference

This is getting silly - we all know that Penguin's can't fly. This problem is simply
resolved by overriding the BirdStuf f.F ly method with Penguin.Fly. We can
hide BirdStuff.F ly with a Private method in Pengui n that does nothing. For
example:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V Fly A Override BirdStuff.Fly
\4
:EndClass A Penguin

Pingo<«[IJNEW Penguin
Pingo.Fly
VALUE ERROR
Pingo.Fly
A

or we can supersede it with a different Public method, as follows:

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff
V R«Fly A Override BirdStuff.Fly
tAccess Public Instance
R«<'Sadly, I cannot fly'
\'4
:EndClass A Penguin

Pingo+[INEW Penguin
Pingo.Fly
Sadly, I cannot fly

Nested Classes

It is possible to define Classes within Classes (Nested Classes).

A Nested Class may be either Private or Pub Lic. This is specified by a :Access
Statement, which must precede the definition of any Class contents. The default is
Private.

A Pub L ic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Pri vate Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

Chapter 3: Object Oriented Programing 189

GolfService Example Class

:Class GolfService
:Using System

:Field Private GOLFILE<«'' A Name of Golf data file
:Field Private GOLFID«0 A Tie number Golf data file

:Class GolfCourse
:Field Public Code<«™1
:Field Public Name<«''

V ctor args
:Implements Constructor
:Access Public Instance
Code Name<«args
(ODF Name,'(',(sCode),')’
v

:EndClass

:Class Slot
tField Public Time
:Field Public Players

V ctorl t
:Implements Constructor
:Access Public Instance
Time<«t
Players«Q0pc'"'

V ctor2 (t pl)
:Implements Constructor
tAccess Public Instance
Time Players<«t pl

v format
:Implements Trigger Players
ODFsTime Players
v
:EndClass

190 Dyalog APL/W Programmer's Guide & Language Reference

:Class Booking
:Field Public OK
:Field Public Course
:Field Public TeeTime
:Field Public Message

V ctor args
:Implements Constructor
:Access Public Instance
OK Course TeeTime Message<«args
v
vV format
:Implements Trigger OK,Message
ODFsCourse TeeTime(>OK¢Message'OK')
v
:EndClass

:Class StartingSheet
:Field Public OK
:Field Public Course
:Field Public Date
:Field Public Slots<«[NULL
:Field Public Message

V ctor args
:Implements Constructor
tAccess Public Instance
OK Course Date<«args
v
v format
:Implements Trigger OK,Message
[ODFs2 1p(sCourse Date)(t3s 'Slots)
v
:EndClass

V ctor file
:Implements Constructor
:Access Public Instance
GOLFILE<«file
OFUNTIE(((YOFNAMES)~"' ')1cGOLFILE)>=[FNUMS,O0
:Trap 22
GOLFID«GOLFILE OFTIE O
:Else
InitFile
:EndTrap
\'4

Chapter 3: Object Oriented Programing

191

vV dtor

:Implements Destructor
OFUNTIE GOLFID

InitFile;COURSECODES;COURSES; INDEX;I
tAccess Public
:If GOLFID#0
GOLFILE [JFERASE GOLFID
:EndIf
GOLFID«GOLFILE [FCREATE O
COURSECODES+«1 2 3
COURSES+'St Andrews' 'Hindhead' 'Basingstoke’
INDEX<«(pCOURSES)pO
COURSECODES COURSES INDEX [JFAPPEND GOLFID
:tFor I :In 1pCOURSES
INDEX[I]«6 & [OFAPPEND 1
:EndFor
COURSECODES COURSES INDEX [JFREPLACE GOLFID 1

R<GetCourses ; COURSECODES ; COURSES; INDEX
tAccess Public

COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
R<{0NEW GolfCourse w} {§t+COURSECODES COURSES

192 Dyalog APL/W Programmer's Guide & Language Reference

V R«<GetStartingSheet
ARGS ; CODE ; COURSE ;DATE ; COURSECODES

s COURSES ; INDEX ; COURSETI ; IDN
sDATES;COMPS ; IDATE; TEETIMES
sGOLFERS;;IT

:Access Public

CODE DATE<«ARGS

COURSECODES COURSES INDEX<[JFREAD GOLFID 1

COURSEI+COURSECODES1CODE

COURSE<[INEW GolfCourse(CODE(COURSEI>COURSES,c'"'))

R«[ONEW StartingSheet(0 COURSE DATE)

:If COURSEI>pCOURSECODES

R.Message<«'Invalid course code'

:Return
:tEndIf
IDN«2 [ONQ'.' 'DateToIDN',DATE.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEI-INDEX
IDATE<DATES1IDN

:If IDATE>pDATES
R.Message<«'No Starting Sheet available'
:Return
tEndIf
TEETIMES GOLFERS<«[JFREAD GOLFID,IDATE>COMPS
T«DateTime.New (cDATE.(Year Month Day)), "4[1]
24 60 I1TTEETIMES
R.Slots<{[ONEW Slot w} 'T,ec " VGOLFERS
R.0OK<«1

Chapter 3: Object Oriented Programing 193

V R«<MakeBooking ARGS;CODE ;COURSE;SLOT;TEETIME

If

s COURSECODES ; COURSES ; INDEX
sCOURSEI; IDN;DATES;COMPS; IDATE
sTEETIMES ; GOLFERS;OLD ; COMP ; HOURS
sMINUTES;NEAREST; TIME ; NAMES ; FREE
sFREETIMES;I;J;DIFF
tAccess Public
A If GimmeNearest is 0, tries for specified time
GimmeNearest is 1, gets nearest time
CODE TEETIME NEAREST<«3tARGS
COURSECODES COURSES INDEX<«[JFREAD GOLFID 1
COURSEI+<COURSECODES1CODE
COURSE<«[INEW GolfCourse(CODE (COURSEI->COURSES,c'"))
SLOT<+[INEW Slot TEETIME
R<[NEW Booking(0 COURSE SLOT'"')
:If COURSEI>pCOURSECODES
R.Message<«'Invalid course code'
:Return
:EndIf
:If TEETIME.Now>TEETIME
R.Message<«'Requested tee-time is in the past'
:Return
:EndIf
:If TEETIME>TEETIME.Now.AddDays 30
R.Message<«'Requested tee-time is more than 30
days from now'
:Return
:EndIf
IDN«2 [ONQ'.' 'DateToIDN',TEETIME.(Year Month Day)
DATES COMPS<[JFREAD GOLFID,COURSEI-INDEX
IDATE«DATES1IDN
:If IDATE>pDATES
TEETIMES«(24 6017 0)+10x 1+11+8x%6
GOLFERS«((pTEETIMES),4)pc''llowed per tee time

:If 0=0LD<«>(DATES<2 [INQ'.' 'DateToIDN',3t0TS)/
1pDATES
COMP«(TEETIMES GOLFERS)[JFAPPEND GOLFID
DATES,<«IDN
COMPS ,«COMP
(DATES COMPS)[JFREPLACE GOLFID,COURSEI-INDEX
tElse
DATES[OLD]<«IDN
(TEETIMES GOLFERS)[FREPLACE GOLFID,
COMP<0OLD>COMPS

DATES COMPS [JFREPLACE GOLFID,COURSEI-INDEX
tEndIf

194 Dyalog APL/W Programmer's Guide & Language Reference

v

tElse
COMP<IDATE>COMPS
TEETIMES GOLFERS<«[JFREAD GOLFID COMP
tEndIf
HOURS MINUTES<«TEETIME. (Hour Minute)
NAMES«(34ARGS)~8""
TIME«<24 60LHOURS MINUTES
TIME<«<10x[0.5+TIME=10
:If ~NEAREST
I<«TEETIMES1TIME
:If I>pTEETIMES
:0rIf (pNAMES)>>,/+/0=p GOLFERS[I;]
R.Message<«'Not available'
:Return
:EndIf
:Else
:If ~v/FREE«(pNAMES)<>,/+/0=p GOLFERS
R.Message<«'Not available'
:Return
tEndIf
FREETIMES<«(FREExTEETIMES)+32767x~FREE
DIFF«|FREETIMES-TIME
I<DIFF1|/DIFF
tEndIf
J<(>,/0=p"GOLFERS[I;])/14
GOLFERS[I; (pNAMES)1J]«NAMES
(TEETIMES GOLFERS)OFREPLACE GOLFID COMP
TEETIME<«DateTime.New TEETIME.(Year Month Day),
3t24 60TI-TEETIMES
SLOT.Time«TEETIME
SLOT.Players<«(>,/0<p "GOLFERS[I;])/GOLFERS[I;]
R.(OK TeeTime)«l SLOT

:EndClass

Chapter 3: Object Oriented Programing 195

GolfService Example

The GolfService Example Class illustrates the use of nested classes. GolfService was
originally developed as a Web Service for Dyalog.Net and is one of the samples dis-
tributed in samples\asp.net\webservices. This version has been reconstructed as a
stand-alone APL Class.

GolfService contains the following nested classes, all of which are Private.

A Class that represents a Golf Course, having Fields Code and

GolfCourse
Name.

A Class that represents a tee-time or match, having Fields
Slot Time and Players. Up to 4 players may play together in a
match.

A Class that represents a reservation for a particular tee-time at
a particular golf course. This has Fields OK, Course,
TeeTime and Message. The value of TeeTime is an
Instance of a Slot Class.

Booking

A Class that represents a day's starting-sheet at a particular golf
StartingSheet | course. It has Fields OK, Course, Date, Slots, Message.
Slots is an array of Instances of Slot Class.

The GolfService constructor takes the name of a file in which all the data is stored.
This file is initialised by method InitF i Lle ifit doesn't already exist.

G+[INEW GolfService 'F:\HELP11.0\GOLFDATA'
G

#.[Instance of GolfService]

The GetCourses method returns an array of Instances of the internal (nested) Class
GolfCourse. Notice how the display form of each Instance is established by the Golf-
Course constructor, to obtain the output display shown below.

G.GetCourses
St Andrews(1) Hindhead(2) Basingstoke(3)

All of the dates and times employ instances of the .Net type System.DateTime, and
the following statements just set up some temporary variables for convenience later.

O«Tomorrow<([JNEW DateTime(34[TS)).AddDays 1
31/03/2006 00:00:00

(J«TomorrowAt7«<Tomorrow.AddHours 7
31/03/2006 07:00:00

196 Dyalog APL/W Programmer's Guide & Language Reference

The MakeBooking method takes between 4 and 7 parameters viz.

e the code for the golf course at which the reservation is required

o the date and time of the reservation

e a flag to indicate whether or not the nearest available time will do
e a list of up to 4 players who wish to book that time.

The result is an Instance of the intemal Class Booking. Once again, [JDF is used to
make the default display of these Instances meaningful. In this case, the reservation is
successful.

G.MakeBooking 2 TomorrowAt7 1 'Pete' 'Tiger'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger OK

Bob, Amie and Jack also ask to play at 7:00 but are given the 7:10 tee-time instead
(4-player restriction).

G.MakeBooking 2 TomorrowAt7 1 'Bob' 'Arnie' 'Jack'
Hindhead(2) 31/03/2006 07:10:00 Bob Arnie Jack
OK

However, Pete and Tiger are joined at 7:00 by Dave and Al.

G.MakeBooking 2 TomorrowAt7 1 'Dave’ 'Al'
Hindhead(2) 31/03/2006 07:00:00 Pete Tiger Dave
Al OK

Up to now, all bookings have been made with the tee-time flexibility flag set to 1.
Inflexible Jim is only interested in playing at 7:00...

G.MakeBooking 2 TomorrowAt7 0 'Jim'
Hindhead(2) 31/03/2006 07:00:00 Not available

... o his reservation fails (4-player restriction).

Finally the GetStartingSheet method is used to obtain an Instance of the internal
Class StartingSheet for the given course and day.

G.GetStartingSheet 2 Tomorrow
Hindhead(2) 31/03/2006 00:00:00
31/03/2006 07:00:00 Pete Tiger Dave Al
31/03/2006 07:10:00 Bob Arnie Jack
31/03/2006 07:20:00

Chapter 3: Object Oriented Programing 197

Namespace Scripts

A Namespace Script is a script that begins with a : Names pace statement and ends
with a : EndNamespace statement. When a Namespace Script is fixed, it estab-
lishes an entire namespace that may contain other namespaces, functions, variables
and classes.

The names of Classes defined within a Namespace Script which are parents, children,
or siblings are visible both to one another and to code and expressions defined in the
same script, regardless of the namespace hierarchy within it. Names of Classes which
are nieces or nephews and their descendants are however not visible.

For example:

:Namespace a

d<[JNEW a1
e<[INEW bb2

:Class al
vV r«<foo
:Access Shared Public
r<[ONEW'b1 b2
\'4
tEndClass a al

V r«goo
r<al.foo
v

V r<foo
r<[ONEW'b1 b2
v

:Namespace b
:Class b1
tEndClass a b1
:Class b2
:Class bb2
:EndClass A bb2
tEndClass A b2
:EndNamespace A b

:EndNamespace A a

198 Dyalog APL/W Programmer's Guide & Language Reference

a.d
#.a.[al]

a.e
#.a.[bb2]

a.foo
#.a.[b1] #.a.[b2]

Note that the names of Classes b1 (a.b.b1)and b2 (a.b.b2)are not visible from
their “uncle” al (a.al).

a.goo
VALUE ERROR
foo[2] r<«[NEW'b1 b2

Notice that Classes in a Namespace Script are fixed before other objects (hence the
assignments to d and e are evaluated affer Classes al and bb2 are fixed), although
the order in which Classes themselves are defined is still important if they reference
one another during initialisation.

Warning: If you introduce new objects of any type (functions, variables, or classes)
into a namespace defined by a script by any other means than editing the script, then
these objects will be lost the next time the script is edited and fixed. Also, if you mod-
ify a variable which is defined in a script, the script will not be updated.

Chapter 3: Object Oriented Programing 199

Namespace Script Example

The DiaryStuff example illustrates the manner in which classes may be defined and
used in a Namespace script.

DiaryStuff defines two Classes named Diary and DiaryEntry.

Diary contains a (private) Field named entries, which is simply a vector of
instances of DiaryEntry. These are 2-clement vectors containing a NET Date-
Time object and a description.

The entries Field is initialised to an empty vectorof DiaryEntry instances
which causes the invocation of the default constructorDiaryEntry.MakeO when
Diary is fixed. See "Empty Arrays of Instances: Why ?" on page 149 for further
explanation.

The entries Field is referenced through the Entry Property, which is defined as
the Default Property. This allows individual entries to be referenced and changed
using indexing on a Di ary Instance.

Note that DiaryEntry is defined in the script first (before Diary) because it is ref-
erenced by the initialisation ofthe Diaries.entries Field

:Namespace DiaryStuff
:Using System

:Class DiaryEntry
:Field Public When
:Field Public What
vV Make(ymdhm wot)
tAccess Public
:Implements Constructor
When What<«([ONEW DateTime(6t5tymdhm))wot
[(ODFsWhen What
v
vV MakeO
tAccess Public
:Implements Constructor
When What<[NULL"'
v
tEndClass A DiaryEntry

200 Dyalog APL/W Programmer's Guide & Language Reference

:Class Diary
:Field Private entries<«Op[INEW DiaryEntry
V R<Add(ymdhm wot)
tAccess Public
R<[JNEW DiaryEntry(ymdhm wot)
entries,«R

V R<DoingOn ymd;X
tAccess Public
X<, (tentries.When.(Year Month Day))*.=3 1p3tymd
R<X/entries

V R<Remove ymdhm;X
tAccess Public
:If Rev/X«entries.When=[INEW DateTime(6t5tymdhm)
entries<«(~X)/entries
tEndIf
v
:Property Numbered Default Entry
vV R<Shape
R<pentries
v
V R<Get arg
R<arg.Indexers>entries
\4
vV Set arg
entries[arg.Indexers]«arg.NewValue

v
:EndProperty
:EndClass a Diary

:EndNamespace

Chapter 3: Object Oriented Programing 201

Create a new instance of Diary.
D<[INEW DiaryStuff.Diary
Add a new entry "meeting with John at 09:00 on April 30"

D.Add(2006 4 30 9 0) 'Meeting with John'
30/04/2006 09:00:00 Meeting with John

Add another diary entry "Dentist at 10:00 on April 30"

D.Add(2006 4 30 10 0) 'Dentist'
30/04/2006 10:00:00 Dentist

One of the benefits of the Namespace Script is that Classes defined within it (which
are typically related) may be used independently, so we can create a stand-alone
instance of DiaryEntry; "Doctorat 11:00"...

Doc+[JNEW DiaryStuff.DiaryEntry((2006 4 30 11 0)
'Doctor')
Doc
30/04/2006 11:00:00 Doctor

... and then use it to replace the second Diary entry with indexing:
D[2]<«Doc
and just to confirm it is there...

D[2]
30/04/2006 11:00:00 Doctor

What am I doing on the 30th?

D.DoingOn 2006 4 30
30/04/2006 09:00:00 Meeting with John
30/04/2006 11:00:00 Doctor

Remove the 11:00 appointment...

D.Remove 2006 4 30 11 O
1

and the complete Diary is...

1)
30/04/2006 09:00:00 Meeting with John

202 Dyalog APL/W Programmer's Guide & Language Reference

Class Declaration Statements

This section summarises the various declaration statements that may be included in a
Class or Namespace Script. For information on other declaration statements, as they
apply to functions and methods, see "Function Declaration Statements" on page 69.

:Interface Statement
:Interface <interface name>

;éﬁdlnterface

An Interface is defined by a Script containing skeleton declarations of Properties
and/or Methods. The script must begin witha : Interface Statement and end
witha :EndInterface Statement.

An Interface may not contain Fields.

Properties and Methods defined in an Interface, and the Class functions that imple-
ment the Interface, may not contain :Access Statements.

:Namespace Statement
:Namespace <namespace name>
;éﬁdNamespace

A Namespace Script may be used to define an entire namespace containing other
namespaces, functions, variables and Classes.

A Namespace script must begin with a : Namespace statement and end with a
:EndNamespace statement.

Sub-namespaces, which may be nested, are defined by pairs of : Namespace and
:EndNamespace statements within the Namespace script.

Classes are defined by pairs of : Class and : EndClass statements within the
Namespace script, and these too may be nested.

The names of Classes defined within a Namespace Script are visible both to one
another and to code and expressions defined in the same script, regardless of the
namespace hierarchy within it.

A Namespace script is therefore particularly useful to group together Classes that
refer to one another where the use of nested classes is inappropriate.

Chapter 3: Object Oriented Programing 203

:Class Statement

:Class <class name><:base class name> <,interface name...>
:Include <namespace>
:EndClass

A class script begins with a : Class statement and ends with a : EndClass state-
ment. The elements that comprise the : Cl ass statement are as follows:

Element Description

class Optionally, specifies the name of the Class, which must

name conform to the rules governing APL names.

base

class Optionally specifies the name of a Class from which this Class
is derived and whose members this Class inherits.

name

;Zizrface The names of one or more Interfaces which this Class supports.

A Class may import methods defined in separate plain Namespaces with one or more
: Inc lude statements. For further details, see "Including Namespaces in Classes"
on page 186.

Examples:

The following statements define a Class named Pengu i n that derives from (is based
upon) a Class named Animal and which supports two Interfaces named
BirdBehaviour and FishBehaviour.

:Class Penguin: Animal,BirdBehaviour,FishBehaviour
;éﬁdClass

The following statements define a Class named Pengu i n that derives from (is based
upon) a Class named Animal and includes methods defined in two separate Names-
pacesnamed BirdStuff and FishStuff.

:Class Penguin: Animal
:Include BirdStuff
:Include FishStuff

;éﬁdCLass

204 Dyalog APL/W Programmer's Guide & Language Reference

:Using Statement

:Using <NameSpace[,Assembly]>

This statement specifies a NET namespace that is to be searched to resolve unqual-
ified names of .NET types referenced by expressions in the Class.

Element Description

NameSpace | Specifies a NET namespace.

Specifies the Assembly in which NameSpace is located. If the
Assembly is defined in the global assembly cache, you need
only specify its name. If not, you must specify a full or relative
pathname.

Assembly

Ifthe Microsoft .Net Framework is installed, the System namespace
inmscorlib.dll isautomatically loaded when Dyalog APL starts. To access this
namespace, it is not necessary to specify the name ofthe Assembly.

When the class is fixed, JUSING is inherited from the surrounding space. Each
:Us ing statement appends an element to JUSING, with the exception of :Using
with no argument:

If you omit <Namespace>, this is equivalent to clearing JUSING, which means
that no .NET namespaces will be searched (unless you follow this statement with
additional :Using statements, each of which will append to JUSING).

To set JUSING, to a single empty character vector, which only allows references to
fully qualified names of classes in mscorlib.dl1l, you must write:

:Using , (note the presence of the comma)
or
tUsing ,mscorlib.dll

i.e. specify an empty namespace name followed by no assembly, or followed by the
default assembly, which is always loaded.

Chapter 3: Object Oriented Programing 205

:Attribute Statement

:Attribute <Name> [ConstructorArgs]
The :Attribute statement is used to attach .Net Attributes to a Class or a Method.

Attributes are descriptive tags that provide additional information about pro-
gramming elements. Attributes are not used by Dyalog APL but other applications
can refer to the extra information in attributes to determine how these items can be
used. Attributes are saved with the metadata of Dyalog APL NET assemblies.

Element Description

Name The name of a Net attribute

ConstructorArgs |[Optional arguments for the Attribute constructor

Example

The following Class has SerializableAttribute and
CLSCompliantAttribute attributes attached to the Class as a whole, and
ObsoleteAttribute attributes attached to Methods f oo and goo within it.

:Class c1

tusing System
tattribute SerializableAttribute
tattribute CLSCompliantAttribute 1

v foo(pl p2)
:Access public instance
:Signature foo Object,Object
tAttribute ObsoleteAttribute
v

vV goo(pl p2)
:Access public instance
:Signature foo Object,Object
:Attribute ObsoleteAttribute 'Don''t use this' 1

v

tEndClass A ci

When this Class is exported as a .Net Class, the attributes are saved in its metadata.
For example, Visual Studio will warn developers if they make use of a member
which hasthe ObsoleteAttribute.

206

Dyalog APL/W Programmer's Guide & Language Reference

:Access Statement

:Access <Private|Pu

:Access <WebMethod>

blic><Instance|Shared><Overridable>
<Override>

The :Access statement is used to specify characteristics for Classes, Properties and

Methods.

Element

Description

Private|Public

Specifies whether or not the (nested) Class, Property or
Method is accessible from outside the Class or an
Instance of the Class. The default is Private.

Instance|Shared

For a Field, specifies if there is a separate value of the
Field in each Instance of the Class, or if there is only a
single value that is shared between all Instances.For a
Property or Method, specifies whether the code
associated with the Property or Method runs in the
Class or Instance.

WebMethod

Applies only to a Method and specifies that the
method is exported as a web method. This applies
only to a Class that implements a Web Service.

Overridable

Applies only to an Instance Method and specifies that
the Method may be overridden by a Method in a
higher Class. See below.

Override

Applies only to an Instance Method and specifies that
the Method overrides the corresponding Overridable
Method defined in the Base Class. See below.

Overridable/Override

Normally, a Method defined in a higher Class replaces a Method of the same name
that is defined in its Base Class, but only for calls made from above or within the
higher Class itself (or an Instance of the higher Class). The base method remains avail-
able in the Base Class and is invoked by a reference to it from within the Base Class.

Chapter 3: Object Oriented Programing 207

However, a Method declared as being Overridab le is replaced in situ (i.e. within
its own Class) by a Method of the same name in a higher Class if that Method is itself
declared with the Override keyword. For further information, see "Superseding
Base Class Methods" on page 169.

Nested Classes

The :Access statement is also used to control the visibility of one Class that is
defined within another (a nested Class). A Nested Class may be either Private or
Pub Lic. Note that the : Access Statement must precede the definition of any Class
contents.

A Pub L ic Nested Class is visible from outside its containing Class and may be used
directly in its own right, whereas a Private Nested Class is not and may only be
used by code inside the containing Class.

However, methods in the containing Class may return instances of Private Nested
Classes and in that way expose them to the calling environment.

WebMethod

Note that : Access WebMethod is equivalent to:

tAccess Public
tAttribute System.Web.Services.WebMethodAttribute

:Implements Statement

The : Implements statement identifies the function to be one of the following
types.

:Implements Constructor <[:Base exprl]>
:Implements Destructor

:Implements Method <InterfaceName.MethodName>
:Implements Trigger <namel><,name2,name3,...>

Element Description

Constructor | Specifies that the function is a Class Constructor.

Specifies that the Base Constructor be called with the result

:Base expr . .
of the expression expr as its argument.

Destructor |Specifies that the function is a Class Destructor.

Specifies that the function implements the Method
Method MethodName whose syntax is specified by Interface
InterfaceName.

Identifies the function as a Trigger Function which is

Trigger . .
99 activated by changes to variable namel, name2, etc.

208 Dyalog APL/W Programmer's Guide & Language Reference

:Field Statement

:Field <Private|Public> <Instance|Shared> <ReadOnly>...
FieldName <<« expr>

A :Field statement is a single statement whose elements are as follows:

Element Description

Specifies whether or not the Field is accessible from
Private|Public |outside the Class or an Instance of the Class. The
default is Private.

Specifies if there is a separate value of the Field in
Instance]|Shared |each Instance of the Class, or if there is only a single
value that is shared between all Instances.

If specified, this keyword prevents the value in the

ReadOnly Field from being changed after initialisation.

FieldName Specifies the name of the Field (mandatory).

« expr Specifies an initial value for the Field.
Examples:

The following statement defines a Field called Name. It is (by default), an Instance
Field so every Instance of the Class has a separate value. It is a Public Field and so
may be accessed (set or retrieved) from outside an Instance.

:Field Public Name
The following statement defines a Field called Months.

:Field Shared ReadOnly Months<«12t ([ONEW
DateTimeFormatInfo)
.AbbreviatedMonthNames

Months is a Shared Field so there is just a single value that is the same for every
Instance of the Class. It is (by default), a Private Field and may only be referenced by
code running in an Instance or in the Class itself. Furthermore, it is ReadOnly and
may not be altered after initialisation. Its initial value is calculated by an expression
that obtains the short month names that are appropriate for the current locale using
the .Net Type DateTimeFormatInfo.

Chapter 3: Object Oriented Programing 209

Notes

Note that Fields are initialised when a Class script is fixed by the editor or by F IX.

Ifthe evaluation of expr causes an error (for example, a VALUE ERROR), an appro-

priate message will be displayed in the Status Window and OF IX will fail with a

DOMAIN ERROR. Note that a ReadOnly Field may only be assigned a value by its
:Field statement.

In the second example above, the expression will only succeed if JUSING is set to
the appropriate path, in this case System.Globalization.

You may not define a Field with the name of one of the permissable keywords (such
as pub L i c). Otherwise the Class not be fixed and the editor will display an error
message in the Status Windows. For example:

error ACO541: a field must have a name " :Field Public public"

210 Dyalog APL/W Programmer's Guide & Language Reference

:Property Section

A Property is defined by a :Property ... :EndProperty sectionin a Class
Script. The syntax of the :Property Statement, and its optional : Access statement is
as follows:

:Property <Simple|Numbered|Keyed> <Default> Namec<,
Name>...
:Access <Private|Public><Instance|Shared>

;éﬁdProperty

Element Description

Specifies the name of the Property by which
it is accessed. Additional Properties, sharing
the same PropertyGet and/or PropertySet
functions, and the same access behaviour may
be specified by a comma-separated list of
names.

Name

Specifies the type of Property (see below).

Simple[NumberedlKeyed | "4 et is Simple.

Specifies that this Property acts as the default
Default property for the Class when indexing is
applied directly to an Instance of the Class.

Specifies whether or not the Property is
accessible from outside the Class or an
Instance of the Class. The default is
Private.

Private|Public

Specifies if there is a separate value of the
Property in each Instance of the Class, or if
there is only a single value that is shared
between all Instances.

Instance|Shared

A Simple Property is one whose value is accessed (by APL) in its entirety and re-
assigned (by APL) in its entirety.

A Numbered Property behaves like an array (conceptually a vector) which is only
ever partially accessed and set (one element at a time) via indices.

A Keyed Property is similar to a Numbered Property except that its elements are
accessed via arbitrary keys instead of indices.

Chapter 3: Object Oriented Programing 211

Numbered and Keyed Properties are designed to allow APL to perform selections
and structural operations on the Property.

Within the body of a Property Section there may be:

one or more :Access statements
a single PropertyGet function.

a single PropertySet function

a single PropertyShape function

The three functions are identified by case-independent names Get, Set and Shape.

Errors

When a Class is fixed by the Editor or by [OF IX, APL checks the validity of each
Property section and the syntax of PropertyGet, PropertySet and PropertyShape func-
tions within them.

e You may not specify a name which is the same as one of the keywords.

e There must be at least a PropertyGet, or a PropertySet or a PropertyShape
function defined.

e You may only define a PropertyShape function if the Property is Numbered.

If anything is wrong, the Class is not fixed and an error message is displayed in the
Status Window. For example:

error ACO545: invalid or empty property declaration
error AC0595: this property type should not implement a
"shape" function

PropertyArguments Class

Where appropriate, APL supplies the PropertyGet and PropertySet functions with an
argument that is an instance of the internal class PropertyArguments.

PropertyArguments has just 3 read-only Fields which are as follows:

The name of the property. This is useful when one

Name . . .
function is handling several properties.

Array containing the new value for the Property or
NewValue for selected element(s) of the property as specified
by Indexers.

A Boolean vector that identifies which dimensions

IndexersSpecified of the Property are to be referenced or assigned.

A vector that identifies the elements of the Property

Indexers .
that are to be referenced or assigned.

212 Dyalog APL/W Programmer's Guide & Language Reference

PropertyGet Function R«Get {ipa}

The name of the PropertyGet function must be Ge t, but is case-independent. For
example, get, Get, gEt and GET are all valid names for the PropertyGet function

The PropertyGet function must be result returning. For a Simple Property, it may be
monadic or niladic. For a Numbered or Keyed Property it must be monadic.

The result R may be any array. However, for a Keyed Property, R must conform to the
rank and shape specified by ipa.Indexers orbe scalar.

If monadic, ipa is an instance of the internal class .

In all cases, i pa.Name contains the name of the Property being referenced and
NewValue isundefined (VALUE ERROR).

If the Property is Simple, ipa.Indexers isundefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that iden-
tifies a single element of the Property whose value is to be obtained. In this case, R
must be scalar.

Ifthe Property is Keyed, ipa.IndexersSpecified isaBoolean vector with the
same length as the rank of the property (as implied by the result ofthe Shape func-
tion). A value of 1 means that an indexing array for the corresponding dimension of
the Property was specified, while a value of 0 means that the corresponding dimen-
sion was elided. ipa.Indexers isa vector of the same length containing the
arrays that were specified within the square brackets in the reference expression. Spe-
cifically, ipa.Indexers will contain one fewer elements than, the number of
semi-colon (;) separators. If any index was elided, the corresponding element of
ipa.IndexersisONULL

Chapter 3: Object Oriented Programing 213

PropertySet Function Set ipa

The name of the PropertySet function must be Set, but is case-independent. For
example, set, Set, sEt and SET are all valid names for the PropertySet function.

The PropertySet function must be monadic and may not return a result.
ipa is an instance of the internal class .

In all cases, ipa.Name contains the name of the Property being referenced and
NewVa lue contains the new value(s) for the element(s) of the Property being
assigned.

If the Property is Simple, ipa.Indexers isundefined (VALUE ERROR).

If the Property is Numbered, ipa.Indexers is an integer vector of the same length
as the rank of the property (as implied by the result of the Shape function) that iden-
tifies a single element of the Property whose value is to be set.

If the Property is Keyed, ipa.IndexersSpecifiedisaBoolean vector with the
same length as the rank of the property (as implied by the result ofthe Shape func-
tion). A value of 1 means that an indexing array for the corresponding dimension of
the Property was specified, while a value of 0 means that the corresponding dimen-
sion was elided.ipa.Indexers isavector containing the arrays that were spec-
ified within the square brackets in the assignment expression. Specifically,
ipa.Indexers will contain one fewer elements than, the number of semi-colon (;)
separators. If any index was elided, the corresponding element of i pa.Indexers is
ONULL. However, ifthe Keyed Property is being assigned in its entirety, without
square-bracket indexing, i pa.Indexers isundefined (VALUE ERROR).

214 Dyalog APL/W Programmer's Guide & Language Reference

PropertyShape Function R«Shape {ipa}

The name of the PropertyShape function must be Shape, but is case-independent.
For example, shape, Shape, sHape and SHAPE are all valid names for the Prop-
ertyShape function.

A PropertyShape function is only called if the Property is a Numbered Property.
The PropertyShape function must be niladic or monadic and must return a result.

If monadic, ipa is an instance of the internal class . i pa.Name contains the name of
the Property being referenced and NewValue and Indexers are undefined
(VALUE ERROR).

The result R must be an integer vector or scalar that specifies the rank of the Prop-
erty. Each element of R specifies the length of the corresponding dimension of the
Property. Otherwise, the reference or assignment to the Property will fail with
DOMAIN ERROR.

Note that the result R is used by APL to check that the number of indices corresponds
to the rank of the Property and that the indices are within the bounds of its dimen-
sions. If not, the reference or assignment to the Property will fail with RANK ERROR
or LENGTH ERROR.

215

Chapter 4:

Primitive Functions

Scalar Functions

There is a class of primitive functions termed SCALAR FUNCTIONS. This class is
identified in Table 1 below. Scalar functions are pervasive, i.e. their properties apply
at all levels of nesting. Scalar functions have the following properties:

Table 1: Scalar Primitive Functions

Symbol Monadic Dyadic

+ Identity Plus (Add)

- Negative Minus (Subtract)
x Direction (Signum) Times (Multiply)
+ Reciprocal Divide

| Magnitude Residue

L Floor Minimum

[Ceiling Maximum

* Exponential Power

® Natural Logarithm Logarithm

o Pi Times Circular

! Factorial Binomial

~ Not $

? Roll $

€ Type (See Enlist) $

216

Dyalog APL/W Programmer's Guide & Language Reference

Symbol Monadic Dyadic

A And

v Or

A Nand

v Nor

< Less

< Less Or Equal
= Equal

2 Greater Or Equal
> Greater

Not Equal

$ Dyadic form is not scalar

Monadic Scalar Functions

e The function is applied independently to each simple scalar in its argument.

e The function produces a result with a structure identical to its argument.

e When applied to an empty argument, the function produces an empty
result. With the exception of + and €, the type of this result depends on
the function, not on the type of the argument. By definition + and € return
a result of the same type as their arguments.

Example

2 (1 4)
0.5 1 0.25

Chapter 4: Primitive Functions 217

Dyadic Scalar Functions

The function is applied independently to corresponding pairs of simple sca-
lars in its arguments.

A simple scalar will be replicated to conform to the structure of the other
argument. If a simple scalar in the structure of an argument corresponds to a
non-simple scalar in the other argument, then the function is applied
between the simple scalar and the items of the non-simple scalar. Rep-
lication of simple scalars is called SCALAR EXTENSION.

A simple unit is treated as a scalar for scalar extension purposes. A UNIT is
a single element array of any rank. If both arguments are simple units, the
argument with lower rank is extended.

The function produces a result with a structure identical to that of its argu-
ments (after scalar extensions).

If applied between empty arguments, the function produces a composite
structure resulting from any scalar extensions, with type appropriate to the
particular function. (All scalar dyadic functions return a result of numeric

type.)

Examples
234 +123
3517
2 (3 4) +1 (2 3)
3 57
(1 2) 3 + 4 (56)
56 89
10 x 2 (3 4)
20 30 40
24 =2 (4 6)
1 10
(1 1p5) - 1 (2 3)
L 3 2
14" '+10
0
1t (0pc’ ' (0 0))x""'
0 00O
Note: The Axis operator applies to all scalar dyadic functions.

218 Dyalog APL/W Programmer's Guide & Language Reference

Mixed Functions

Mixed rank functions are summarised in Table 2. For convenience, they are sub-
divided into five classes:

Table 2: Mixed rank functions

These functions change the structure of the arguments in
Structural

some way.
Selection These functions select elements from an argument.

These functions identify specific elements by a Boolean map
Selector > oY

or by an ordered set of indices.

. These functions transform arguments in some way, or provide

Miscellaneous | . .

information about the arguments.
Special These functions have special properties.

In general, the structure of the result of a mixed primitive function is different from
that of its arguments.

Scalar extension may apply to some, but not all, dyadic mixed functions.

Mixed primitive functions are not pervasive. The function is applied to elements of
the arguments, not necessarily independently.

Examples

'CAT' 'DOG' 'MOUSE'1c'DOG'
2

3t 1 'TWO' 3 'FOUR'
1 TWO 3

In the following tables, note that:

e [] Implies axis specification is optional
e $ This function is in another class

Chapter 4: Primitive Functions

219

Table 3: Structural Primitive Functions

Symbol | Monadic Dyadic
o $ Reshape
s Ravel [] Catenate/Laminate[]
5 Table Catenate First / Laminate []
$ Reverse [] Rotate []
e Reverse First [] Rotate First []
® Transpose Transpose
1 Mix/Disclose (First) [] $
' Split [] $
c Enclose [] Partitioned Enclose []
€ Enlist (See Type) $
Table 4: Selection Primitive Functions
Symbol | Monadic Dyadic
> Disclose /Mix Pick
t $ Take []
' $ Drop []
/ Replicate []
Replicate First []
\ Expand []
X Expand First []
~ $ Without (Excluding)
n Intersection
u Unique Union
- Same Left
F Identity Right

220

Dyalog APL/W Programmer's Guide & Language Reference

Table 5: Selector Primitive Functions

Symbol | Monadic Dyadic

1 Index Generator Index Of

€ $ Membership
A Grade Up Grade Up

' Grade Down Grade Down
? $ Deal

€ Find

Table 6: Miscellaneous Primitive Functions

Symbol | Monadic Dyadic

o Shape $

= Depth Match

Not Match

¢ Execute Execute

3 Format Format

1 Decode (Base)

Encode (Representation)

8] Matrix Divide Matrix Inverse
Table 7: Special Primitive Functions

Symbol | Monadic Dyadic

> Abort

> Branch

« $ Assignment

[I]« $ Assignment(Indexed)
(I)« Assignment(Selective)
[] Indexing

Chapter 4: Primitive Functions 221

Conformability

The arguments of a dyadic function are said to be CONFORMABLE if the shape of
each argument meets the requirements of the function, possibly after scalar extension.

Fill Elements

Some primitive functions may include fill elements in their result. The fill element
for an array is the enclosed type of the disclose of the array (ce€>Y for array Y). The
Type function (€) replaces a numeric value with zero and a character value with '

The Disclose function (2) returns the first item of an array. Ifthe array is empty, 2Y is
the PROTOTYPE of Y. The prototype is the type of the first element of the original
array.

Primitive functions which may return an array including fill elements are Expand (\
or X), Replicate (/ or #), Reshape (p) and Take (1).

Examples

€1b
000O00O0

€>(13)("'ABC")
00O

ce>(13)('ABC")
00O

ceo>c(13)('ABC')
000

A<'ABC' (1 2 3)
A<0pA
cesA

111

'zceoA

222 Dyalog APL/W Programmer's Guide & Language Reference

Axis Operator

The axis operator may be applied to all scalar dyadic primitive functions and certain
mixed primitive functions. An integer axis identifies a specific axis along which the
function is to be applied to one or both of'its arguments. If the primitive function is
to be applied without an axis specification, a default axis is implied, either the first or

last.
Example
10 1/[1] 3 2p16
12
56
1 2 3+[2]2 3p10 20 30
11 22 33
11 22 33

Sometimes the axis value is fractional, indicating that a new axis or axes are to be
created between the axes identified by the lower and upper integer bounds of the
value (either of which might not exist).

Example
"NAMES',[0.5]"'="

[I0 isan implicit argument of an axis specification.

Functions (A-Z)

Scalar and mixed primitive functions are presented in alphabetical order of their
descriptive names as shown in Figures 3(i) and 3(ii) respectively. Scalar functions
are described in terms of single element arguments. The rules for extension are
defined at the beginning of this chapter.

The class of the function is identified in the heading block. The valence of the func-
tion is implied by its syntax in the heading block.

Chapter 4: Primitive Functions 223

Abort:

->

This is a special case of the Branch function used in the niladic sense. Ifit occurs in
a statement it must be the only symbol in an expression or the only symbol forming
an expression in a text string to be executed by ¢. It clears the most recently sus-
pended statement and all of its pendent statements from the state indicator.

The Abort function has no explicit result. The function is not in the function domain
of operators.

Examples
vV F
[1] "FL1]"
[2] G
[3] "FL3]"
\'
VG
[1] 'G[1]"
[2] -
[3] 'G[3]"
\
F
FL1]
G[1]
OVR'VALIDATE'
V VALIDATE
[1] ~»(12=110AI)p0 © 'ACCOUNT NOT AUTHORISED' ¢ -
\
VALIDATE

ACCOUNT NOT AUTHORISED

110AI
52

224

Dyalog APL/W Programmer's Guide & Language Reference

Add

ReX+Y

Y must be numeric. X must be numeric. R is the arithmetic sumofX and Y. Ris
numeric. This function is also known as Plus.

Examples

12+ 34
b 6

12+ 3,4 5
L 6 7

1J1 2J2 + 373
4J4 5J5

"5 + 4J4 5J5
“1J4 0J5

Chapter 4: Primitive Functions 225

And, Lowest Common Multiple: ReXAY

Case 1: X and Y are Boolean

R is Boolean is determined as follows:

X Y R
0 0 0
0 1 0
1 0 0
1 1 1

Note that the ASCII caret (*) will also be interpreted as an APL And (*).

Example

0101~0011
0001

Case 2: Either or both X and Y are numeric (non-Boolean)

R is the lowest common multiple of X and Y. Note that in this case, [JCT is an implicit
argument.

Example

15127 ~351 40
105 1 4+ O

2 34 A 0j1 152 233
0J2 3J6 8J12

2j2 2j4 A 535 4jb
10710 ~iJ12

226 Dyalog APL/W Programmer's Guide & Language Reference

Assignment: X<Y

Assignment allocates the result of the expression Y to the name or names in X.

IfY is an array expression, X must contain one or more names which are variables, sys-
tem variables, or are undefined. Following assignment, the name(s) in X become var-
iable(s) with value(s) taken from the result of the expression Y.

If X contains a single name, the variable assumes the value of Y.
The assignment arrow (or specification arrow) is often read as 'Is' or 'Gets'.

Examples

A<2.3
A

A<13

More than one name may be specified in X by using vector notation. Ifso, Y must be

avectoror a scalar. IfY is a scalar, its value is assigned to all names in X. If Y isa
vector, each element of Y is assigned to the corresponding name in X.

Examples
A B<2
A
2
B
2
P OI0 Q«'TEXT"' 1 (1 2 3)
5]
TEXT
gdIo
1
Q

Chapter 4: Primitive Functions 227

For compatibility with IBM's APL2, the list of names specified in X may be enclosed
in parentheses.

Examples

(A BC)«t1 23
(D E)«'Hello' 'World'

Multiple assignments are permitted. The value of Y is carried through each assign-
ment:

I<J<«K<«0

I,J,K
00O

Function Assignment

IfY is a function expression, X must be a single name which is either undefined, or is
the name of an existing function or defined operator. X may not be the name of a sys-
tem function, or a primitive symbol.

Examples
PLUS«+
PLUS

+
SUM«+/
SUM

+/

MEAN<{(+/w)*pw}

228

Dyalog APL/W Programmer's Guide & Language Reference

Namespace Reference Assignment

If an expression evaluates to a namespace reference, or ref, you may assign it to a
name. A name assigned to a simple scalar ref, has name class 9, whereas one assigned
to an array containing refs has name class 2.

"f1'OWC'Form'

'ns1' [NS '

N<ns1

ONC'N' A name class of a scalar ref
9

Fefl

ONC'F' A name class of a scalar ref
9

refs<N F A vector of refs.

ONC'refs' A nameclass of vector.
2

F2«2>orefs

ONC 'F2'
9
Re-Assignment

A name that already exists may be assigned a new value if the assignment will not
alter its name class, or will change it from 2 to 9 or vice versa. The table of permitted
re-assignments is as follows:

Ref Variable Function Operator
Ref Yes Yes
Variable Yes Yes
Function Yes Yes
Operator Yes Yes

Chapter 4: Primitive Functions 229

Assignment (Indexed): {R}«X[I]«Y

Indexed Assignment is the Assignment function modified by the Indexing function.
The phrase [I]« is treated as the function for descriptive purposes.

Y may be any array. X may be the name of any array or a selection from a named
array (EXP X)[I]<«Y,see "Assignment (Selective):" on page 234. I must be a
valid index specification. The shape of Y must conform with the shape (implied) of
the indexed structure defined by I. IfY is a scalar or a unit vector it will be extended
to conform. A side effect of Indexed Assignment is to change the value of the
indexed elements of X.

R is the value of Y. Ifthe result is not explicitly assigned or used it is suppressed.
0I0 isan implicit argument of Indexed Assignment.

Three forms of indexing are permitted.

Simple Indexed Assignment

For vector X, I isa simple integer array whose items are from the set 1 pR. Elements
of X identified by index positions I are replaced by corresponding elements of Y.

Examples

+A<15
12345

A[2 3]«10 ¢ A
1 10 10 4 5

The last-most element of Y is assigned when an index is repeated in I:

A[2 2]«100 101 o A
1 101 10 4 5

For matrix X, I is composed of two simple integer arrays separated by the semicolon
character (3). The arrays select indices from the rows and columns of X respectively.

230 Dyalog APL/W Programmer's Guide & Language Reference

Examples

+B«2 3p'REDSUN'
RED
SUN

B[2;2]«'0' o B
RED
SON

For higher-order array X, I is a series of simple integer arrays with adjacent arrays sep-
arated by a single semicolon character (;). Each array selects indices from an axis of
X taken in row-major order.

Examples

c
11 12 13
14 15 16

21 22 23
24 25 26

C[1;1:;3]«103 ¢ C
11 12 103
14 15 16

21 22 23
24 25 26

An indexing array may be ELIDED. That is, ifan indexing array is omitted from the
Kth axis, the indexing vector 1 (pX) [K] is implied:

Cl[s;1:;2 3]«2 2p112 113 122 123 ¢ C

11 112 113

14 15 16

21 122 123

24 25 26
Cl;;]«0 o C

000

000

oo
oo
oo

Chapter 4: Primitive Functions 231

Choose Indexed Assignment

The index specification I is a non-simple integer array. Each item identifies a single
element of X by a set of indices with one element per axis of X in row-major order.

Examples

C
11 12 13 14
21 22 23 24

Clet 1]«101 o C
101 12 13 14
21 22 23 24

Cl(1 2) (2 3)]«102 203 o C
101 102 13 14
21 22 203 24

Cl2 2p(1 3)(2 4)(2 1)(1 4)]«2 2p103 204 201 104 o C
101 102 103 104
201 22 203 204

A scalar may be indexed by the enclosed empty vector:

S
10
S[c10]«c'VECTOR' ¢ S
VECTOR
S[c10]«5 ¢ S
5

Choose Indexed Assignment may be used very effectively in conjunction with Index
Generator (1) and Structural functions in order to assign into an array:

C
11 12 13 14
21 22 23 24
1pC
11 12 13 14
21 22 23 24
C[1 181pCJ«1 2 ¢ C
1 12 13 14
21 2 23 24

C[2 "141pC]+99 o C
1 12 13 99
21 2 23 99

232 Dyalog APL/W Programmer's Guide & Language Reference

Reach Indexed Assignment

The index specification I is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of I are simple vectors (or sca-
lars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples
D«(2 3p16)(2 2p'SMITH' 'JONES' 'SAM' 'BILL')

D
123 SMITH JONES
4+ 56 SAM BILL

=J«c2 (1 2)
-3
D[J]«c'WILLIAMS' ¢ D
1 23 SMITH WILLIAMS
L 56 SAM BILL
DL(1 (1 1))(2 (2 2) 1)]«10 'W' o D
10 2 3 SMITH WILLIAMS
L 56 SAM WILL

m

GREEN YELLOW RED

E[c2 1]«'M' ¢ E
GREEN MELLOW RED

The context of indexing is important. In the last example, the indexing method is
determined to be Reach rather than Choose since E is a vector, not a matrix as would
be required for Choose. Observe that:

€2 1 <> c(e2),(c1)

Note that for any array A, A[<@] represents a scalar quantity, which is the whole of

A, so:
A<5p0
A
000O00O0
A[c8]«1
A

Chapter 4: Primitive Functions 233

Combined Indexed and Selective Assignment

Instead of X being a name, it may be a selection from a named array, and the state-
ment is of the form (EXP X)[I]<«Y.

##llo
#t#rld
Hel lo
World

MAT«<4 3p'Hello’

'World'

(2¢"MAT)[1 2;]«"#'

MAT
##rld
##llo
World
Hello

MAT«4 3p'Hello’
[OML«1 A € is Enlist

##llo
#t#rld
Hel lo
World

'World'

(EMAT)[ZXLLO-5xpEMAT]«'#'

H# L #o
#o# L #
H# L #o
#o# L #

MAT
#o# L #
H# L #o
#o# L #
H# L #o

H# L #o
#o# L #
H# L #o
#o# L #

234 Dyalog APL/W Programmer's Guide & Language Reference

Assignment (Selective):

(EXP X)<«Y

X is the name of a variable in the workspace, possibly modified by the indexing func-
tion (EXP X[I])<«Y,see."Assignment (Indexed):" on page 229. EXP is an expres-
sion that selects elements of X. Y is an array expression. The result of the expression

Y is allocated to the elements of X selected by EXP.

The following functions may appear in the selection expression. Where appropriate
these functions may be used with axis [] and with the Each operator ™.

Functions for Selective Assignment
1 Take
Drop

-«

Ravel

Reverse, Rotate

Reshape

Disclose, Pick

Transpose (Monadic and Dyadic)
Replicate

Expand

Index

Enlist (OML21)

m OO .~ N & U O © -«

Note: Mix and Split (monadic t and V), Type (monadic € when [JML <1) and Mem-
bership (dyadic €) may not be used in the selection expression.

Examples

A<'HELLO'
((Ae"AEIOU')/A)«"x'

A
HxLL

2«3 L4p112
(51,2)«0

O OO
oo o
~NON
N 0 O

Chapter 4: Primitive Functions 235

MAT«3 3p19
(1 1§MAT)<0

MAT

~N F O
coOoON
oo w

OML«<1p so € is Enlist
names<'Andy' 'Karen' 'Liam
(('a'=enames)/enames)«"'x"'
names

Andy Kx*xren Lixm

Each Operator

The functions listed in the table above may also be used with the Each Operator ™.

Examples

A<'HELLO' 'WORLD'
(2¢7A)«" !
A

x%xLLO *%RLD

A<'HELLO' 'WORLD'
((A="0")/7A)«"x!
A

HELL* WxRLD

A<'HELLO' 'WORLD'
((Ae"c'LO")/TA)«"x"
A

HE x % x WxRx*xD

Bracket Indexing

Bracket indexing may also be applied to the expression on the left of the assignment
arrow.

Examples

MAT«4 3p'Hello' 'World'
(T2+"MAT[:;1 3])«'$"’
MAT

Hel$$ World Hel$$

Wor$$ Hello Wor$$

Hel$$ World Hel$$

Wor$$ Hello Wor$$

236 Dyalog APL/W Programmer's Guide & Language Reference

Binomial:

ReX1Y

X and Y may be any numbers except that if Y is a negative integer then X must be a
whole number (integer). R is numeric. An element of R is integer if corresponding ele-
ments of X and Y are integers. Binomial is defined in terms of the function Factorial
for positive integer arguments:

XY <> (1Y)+(1X)xly=-X
For other arguments, results are derived smoothly from the Beta function:
Beta(X,Y) <> +Yx(X-1)!X+Y-1

For positive integer arguments, R is the number of selections of X things from Y
things.

Example

1 1.2 1.4 1.6 1.8 215
5 6.105689248 7.219424686 8.281104786 9.227916704 10

21352
135

Chapter 4: Primitive Functions 237

Branch:

+Y

Y may be a scalar or vector which, if not empty, has a simple numeric scalar as its first
element. The function has no explicit result. It is used to modify the normal
sequence of execution of expressions or to resume execution after a statement has
been interrupted. Branch is not in the function domain of operators.

The following distinct usages of the branch function occur:

Entered in a Statement

E inl i E ion M
in 2 Defined Function ntered in Immediate Execution Mode

LINE Continue with the Restart execution at the specific line of
-> . . .
specific line the most recently suspended function
Continue with the next
->10 . No effect
expression

In a defined function, if Y is non-empty then the first element in Y specifies a state-
ment line in the defined function to be executed next. Ifthe line does not exist, then
execution of the function is terminated. For this purpose, line 0 does not exist.
(Note that statement line numbers are independent of the index origin [J10).

If'Y is empty, the branch function has no effect. The next expression is executed on
the same line, if any, or on the next line if not. Ifthere is no following line, the func-
tion is terminated.

The : GoTo statement may be used in place of Branch in a defined function.

Example

vV TEST
(1] 1
[2] >l
[3] 3
(4] 4

\

TEST
1
4

In general it is better to branch to a LABEL than to a line number. A label occurs in
a statement followed by a colon and is assigned the value of the statement line
number when the function is defined.

238 Dyalog APL/W Programmer's Guide & Language Reference

Example
vV TEST
[1] 1
[2] -~FOUR
[3] 3
(4] FOUR: 4
v

The previous examples illustrate unconditional branching. There are numerous APL
idioms which result in conditional branching. Some popular idioms are identified in

the following table:
Branch . Comment
Expression
STEST/LA Branch'es to label L1 if TEST results in 1 but not if TEST
results in 0.
-TESTpL1 Similar to above.
TESTtL1 Similar to above.

>L1p~=TEST Similar to above.

»L1[tTEST Similar to above but only if JIO«~1.

>L1x1TEST Similar to above but only if JIO«~1.

~(L1,L2,L3)
[N]

+(T1,T2,T3) |Branches to the first selected label dependent on tests T1,
/L1,L2,L3 T2,T3. If all tests result in 0, there is no branch.

Unconditional branch to a selected label.

>Né$L1,L2,L3 |Unconditional branch to thefirst label after rotation.

A branch expression may occur within a statement including ¢ separators:

[5] >NEXTp=TEST ¢ A<A+1 o -END
[6] NEXT:

In this example, the expressions ' A<A+1"' and '>END"' are executed only if TEST
returns the value 1. Otherwise control branches to label NEXT.

In immediate execution mode, the branch function permits execution to be continued
within the most recently suspended function, if any, in the state indicator. Ifthe state
indicator is empty, or if the argument Y is the empty vector, the branch expression
has no effect. Ifa statement line is specified which does not exist, the function is
terminated. Otherwise, execution is restarted from the beginning of the specified
statement line in the most recently suspended function.

Chapter 4: Primitive Functions 239

Example
v F

(1] 1

(2] 2

(31 3
v
2 (STOP'F'
F

1

Fl2]
)SI

#.F[2]x
-2

2

3

The system constant [JL C returns a vector of the line numbers of statement lines in
the state indicator, starting with that in the most recently suspended function. It is
convenient to restart execution in a suspended state by the expression:

~{LcC

Catenate/Laminate: ReX,[K]Y

Y may be any array. X may be any array. The axis specification is optional. Ifspec-
ified, K must be a numeric scalar or unit vector which may have a fractional value. If
not specified, the last axis is implied.

The form R«<X5Y may be used to imply catenation along the first axis.
Two cases of the function catenate are permitted:

1. With an integer axis specification, or implied axis specification.
2. With a fractional axis specification, also called laminate.

Catenation with Integer or Implied Axis Specification

The arrays X and Y are joined along the required axis to form array R. A scalar or unit
vector is extended to the shape of the other argument except that the required axis is
restricted to a unit dimension. X and Y must have the same shape (after extension)
except along the required axis, or one of the arguments may have rank one less than
the other, provided that their shapes conform to the prior rule after augmenting the
array of lower rank to have a unit dimension along the required axis.

The rank of R is the greater of the ranks of the arguments, but not less than 1.

240 Dyalog APL/W Programmer's Guide & Language Reference

Examples

"FUR', 'LONG'
FURLONG

1,2

(2 4p'THISWEEK')s5'="
THIS
WEEK

S,[1]+#5«2 3p16

gl F =
NN
O oW

If, after extension, exactly one of X and Y have a length of zero along the joined axis,
then the data type of R will be that of the argument with a non-zero length. Other-
wise, the data type of R will be that of X.

Lamination with Fractional Axis Specification

The arrays X and Y are joined along a new axis created before the [Kth axis. The
new axis has a length of 2. K must exceed IO (the index origin) minus 1, and K
must be less than JI0 plus the greater of the ranks of X and Y. A scalar or unit vector
argument is extended to the shape of the other argument. Otherwise X and Y must
have the same shape.

The rank of R is one plus the greater of the ranks of X and Y.

Examples

"HEADING',[0.5]'-"
HEADING

"NIGHT',[1.5]"'x"
N %
Ix
Gx*
Hx
T
0d10«0
"HEADING',[70.5]'-"
HEADING

Chapter 4: Primitive Functions 241

Catenate First: Re«X5[K]Y

The form R«X5Y implies catenation along the first axis whereas the form R<X, Y
implies catenation along the last axis (columns). See Catenate/Laminate above.

Ceiling:

Re[Y

Ceiling is defined in terms of Flooras [Y«»>-| -Y
Y must be numeric.

If an element of Y is real, the corresponding element of R is the least integer greater
than or equal to the value of Y.

Ifan element of Y is complex, the corresponding element of R depends on the rela-
tionship between the real and imaginary parts of the numbersin Y.

Examples
[T2.3 0.1 100 3.3
“2 1 100 4

[1.2j2.5 1.2§72.5
133 1372

For further explanation, see "Floor:" on page 263.

0CT is an implied argument of Ceiling.

242

Dyalog APL/W Programmer's Guide & Language Reference

Circular:

R«XoY

Y must be numeric. X must be an integer in the range ~12

< X < 12.Risnumeric.

X determines which of a family of trigonometric, hyperbolic, Pythagorean and com-
plex functions to apply to Y, from the following table. Note that when Y is complex,
aand b are used to represent its real and imaginary parts, while © represents its

phase.
(-X) o Y X |[XoY
(1-Yx2)x.5 0 (1-Y*x2)x.5
Arcsin Y 1 Sine Y
Arccos Y 2 Cosine Y
Arctan Y 3 Tangent Y
(Y+1)x((Y-1)+Y+1)x0.5 4 (1+Y%x2)x.5
Arcsinh Y 5 Sinh Y
Arccosh Y 6 Cosh Y
Arctanh Y 7 Tanh Y
-8oY 8 (-1+Y%2)x0.5
Y a
+Y 10 ||Y
Yx0J1 11 |b
*Yx0J1 12 |e

Examples

07101

0 1.570796327

1o0(PI«01)+2 3 4

1 0.8660254038 0.7071067812
20PI=3

0.5
9 1103.5J71.2

3.5 71.2

9 110.03.5J71.2 2J3 3J4

Chapter 4: Primitive Functions 243

- W
N o
w N
Fw

Conjugate: Re+Y

If Yis complex, R is Y with the imaginary part of all elements negated.
IfY is real or non-numeric, R is the same array unchanged.

Note that if Y is nested, the function has to process the entire array in case any item is
complex.

Examples

+3jk
3774

+132 233 3ij4
1372 2373 3774

3j4++3]4
6

3jx+3jk
25

+A<15
12345

+[JEX'A’
1

Deal:

R«X?Y

Y must be a simple scalar or unit vector containing a non-negative integer. X must be
a simple scalar or unit vector containing a non-negative integer and X<Y.

R is an integer unit vector obtained by making X random selections from 1Y without
repetition.
Examples

13752
7 40 24 28 12 3 36 49 20 44 2 35 1

13?752
20 4+ 22 36 31 49 45 28 5 35 37 48 4O

244 Dyalog APL/W Programmer's Guide & Language Reference

0IO0 and [RL are implicit arguments of Deal. A side effect of Deal is to change the
value of RL. See "Random Number Generator:" on page 372 and "Random Link: "
on page 583.

Decode:

ReX1Y

Y must be a simple numeric array. X must be a simple numeric array. R is the

numeric array which results from the evaluation of Y in the number system with radix
X.

X and Y are conformable if the length of the last axis of X is the same as the length of
the first axis of Y. A scalar or unit vector is extended to a vector of the required
length. Ifthe last axis of X or the first axis of Y has a length of 1, the array is
extended along that axis to conform with the other argument.

The shape of R is the catenation of the shape of X less the last dimension with the
shape of Y less the first dimension. That is:

PR <> (T14pX),1ipY

For vector arguments, each element of X defines the ratio between the units for cor-
responding pairs of elements in Y. The first element of X has no effect on the result.

This function is also known as Base Value.

Examples

60 6013 13
193

0 6013 13
193

60L3 13
193

211 010

10

Chapter 4: Primitive Functions 245

Polynomial Evaluation

If X is a scalar and Y a vector of length n, decode evaluates the polynomial(Index
origin 1):

YB@””+Y@§WQ+m+Y@9”

Examples

211 2 3 4
26

311 2 3 4
58

1j111 2 3 4
5J9

For higher order array arguments, each of the vectors along the last axis of X is taken
as the radix vector for each of the vectors along the first axis of Y.

Examples
M
00001111
00110011
01010101
A

FWN —
FWN —
FWN —

A1M

2 1 2 2 3
3 4+ 5 6 7
4 9 10 12 13
5 16 17 20 21

O OOOo
-
FWN =~

Scalar extension may be applied:

21M
01234567

Extension along a unit axis may be applied:

+A<2 1p2 10
2
10
A1M
1 2 3 4 5 6 7
1

0
0 10 11 100 101 110 111

246

Dyalog APL/W Programmer's Guide & Language Reference

Depth:

(OML) Re=Y

Y may be any array. R is the number of levels of nesting of Y. A simple scalar (rank-0
number, character or namespace-reference) has a depth of 0.

A higher rank array, all of whose items are simple scalars, is termed a simple array
and has a depth of 1. An array whose items are not all simple scalars is nested and has
a depth 1 greater than that of its most deeply nested item.

Y is of uniform depth if it is simple or if all of its items have the same uniform depth.
If[ML <2 and Y is not of uniform depth then R is negated.

If(ML <2, a negative value of R indicates non-uniform depth.

Examples

=1
0

EIAI
0

='ABC'
1

=1 'A'
1

OML<«0

=A<(1 2)(3 (4 5)) A Non-uniform array
-3

="A A A[1] is uniform, A[2] is non-uniform
1 72

=A
00 01

OML<«2

=A
3

=
1 2

“A

o
o
o
-

Chapter 4: Primitive Functions 247

Direction (Signum): RexY

Y may be any numeric array.

Where an element of Y is real, the corresponding element of R is an integer whose
value indicates whether the value is negative (T 1), zero (0) or positive (1).

Where an element of Y is complex, the corresponding element of R is a number with
the same phase but with magnitude (absolute value) 1. It is equivalent to Y+ | Y.

Examples

x715.3 0 101
101

x3j4 435
0.6J0.8 0.6246950476J0.7808688094

{w:lw}3i% 435
0.6J0.8 0.6246950476J0.7808688094

[x3j4% 4j5

248 Dyalog APL/W Programmer's Guide & Language Reference

Disclose:

(OML) R«3Y or R<«tY

The symbol chosen to represent Disclose depends on the current Migration Level.
If (ML <2, Disclose is represented by the symbol: .
If OML 22, Disclose is represented by the symbol: t.

Y may be any array. R isan array. IfY is non-empty, R is the value of the first item of
Y taken in ravel order. IfY is empty, R is the prototype of Y.

Disclose is the inverse of Enclose. The identity R«<->><R holds for all R. Disclose is
also referred to as First.

Examples
o1
1
22 4 6
2
>'MONDAY' 'TUESDAY'
MONDAY
2(1 (2 3))(4% (5 6))
1 23
510
0
] I=DII
1
51}cl,c2 3

0 00

Chapter 4: Primitive Functions 249

Divide: R«X+Y

Y must be a numeric array. X must be a numeric array. R is the numeric array result-
ing from X divided by Y. System variable (IDIV is an implicit argument of Divide.

IfJDIV=0 and Y=0 then if X=0, the result of X+Y is 1; if X#0 then X+Y is a DOMAIN
ERROR.

IfJDIV=1 and Y=0, the result of X+Y is O for all values of X.

Examples

2 0 5+4+ 0 2
0.5 1 2.5

3j1 2.5 4j5+2 1j1 .2
1.5J0.5 1.25J71.25 20725

0oIv«1
205400
0.500

250 Dyalog APL/W Programmer's Guide & Language Reference

Drop: ReX{Y

Y may be any array. X must be a simple scalar or vector of integers. If X is a scalar, it
is treated as a one-element vector. If'Y is a scalar, it is treated as an array whose shape
is (pX)p1l. After any scalar extensions, the shape of X must be less than or equal to
the rank of Y. Any missing trailing items in X default to 0.

R is an array with the same rank as Y but with elements removed from the vectors
along each of the axes of Y. For the Ith axis:

o if X[I] is positive, all but the first X[I] elements of the vectors result.
e if X[I] is negative, all but the last X[I] elements of the vectors result.

If the magnitude of X[I] exceeds the length of the Ith axis, the result is an empty
array with zero length along that axis.

Examples
4} 'OVERBOARD'
BOARD
~54'OVERBOARD'
OVER
p104 'OVERBOARD'
0
M
ONE
FAT
FLY
0 ~2iM
0
F
F
T2 T1IM
ON
14M
FAT
FLY
M3<2 3 4p[A
1 14¢M3
QRST
UVWX
“1 T1IM3
ABCD

EFGH

Chapter 4: Primitive Functions 251

Drop with Axes: R«X4[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a vec-
tor of zero or more axes of Y.

R is an array of the elements of Y with the first or last X[i] elements removed. Ele-
ments are removed from the beginning or end of Y according to the sign of X[i].

The rank of R is the same as the rank of Y:
pPR <> ppY
The size of each axis of R is determined by the corresponding element of X:

(pR)L,K] <> Ol (pY)[,KI-],X

Examples

OeMe2 3 4pr2b
1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16
17 18 19 20
21 22 23 24

14[2]M
5 6 7 8
9 10 11 12

17 18 19 20
21 22 23 24

24[3IM

2 14[3 2]M

252 Dyalog APL/W Programmer's Guide & Language Reference

Enclose:

RecY

Y may be any array. R is a scalar array whose item is the array Y. If'Y is a simple sca-
lar, R is the simple scalar unchanged. Otherwise, R has a depth whose magnitude is
one greater than the magnitude of the depth of Y.

Examples
c1

10

Chapter 4: Primitive Functions 253

Enclose with Axes: R«c[K]Y

Y may be any array. K is a vector of zero or more axes of Y. R is an array of the ele-
ments of Y enclosed along the axes K. The shape of R is the shape of Y with the K
axes removed:

pR <> (pY)[(1ppR)~K]
The shape of each element of R is the shape of the K'th axes of Y:
p>R <> (pY)[,K]

Examples
ldisplay A<2 3 4p'DUCKSWANBIRDWORMCAKESEED'

Jdisplay <[3]A

DUCK SWAN BIRD

WORM CAKE SEED

Jdisplay <[2 3]A

SWAN CAKE
BIRD SEED

Jdisplay <[1 3]A

[[[
IDUCK| YSWAN| 4BIRD
IWORM |CAKE |SEED

I
+
L
| [
l {DUCK| +WORM
€
L

254 Dyalog APL/W Programmer's Guide & Language Reference

Encode:

ReXTY

Y must be a simple numeric array. X must be a simple numeric array. R is the
numeric array which results from the representation of Y in the number system
defined by X.

The shape of R is (pX) , pY (the catenation of the shapes of X and Y).

If X is a vector or a scalar, the result for each element of Y is the value of the element
expressed in the number system defined by radix X. IfY is greater than can be
expressed in the number system, the result is equal to the representation of the res-
idue (x/X) | Y. Ifthe first element of X is 0, the value will be fully represented.

This function is also known as Representation.

Examples

1075 15 125
555

0 1075 15 125
01 12
55 5

Chapter 4: Primitive Functions 255

If X is a higher order array, each of the vectors along the first axis of X is used as the
radix vector for each element of Y.

Examples
A

NPNNNDNDNDNDN
00 00000 OOOOo
[e)N NeoloNeNoNoNe]

- -

AT75

P, O, OO0
WP, P, O0OO0O0O0O0O
R FOOOOOO

-

The example shows binary, octal and hexadecimal representations of the decimal
number 75.

Examples
0 111.25 10.5
1 10
0.25 0.5
4 13713752
310 23201 31231
12 2 41217 6 3 101 0 3 8

256 Dyalog APL/W Programmer's Guide & Language Reference

Enlist: (OML21) R«eY

Migration level must be such that [[ML>1 (otherwise see "Type:" on page 322).

Y may be any array, R is a simple vector created from all the elements of Y in ravel
order.

Examples

OML<«1 A Migration level 1
MAT<«2 2p'MISS' 'IS' 'SIP' 'PI' ¢ MAT
MISS IS
SIP PI
eMAT
MISSISSIPPI

Mel (2 2p2 3 4 5) (6(7 8))
M
1 23 6 178
4L 5
eM
12345678

Chapter 4: Primitive Functions 257

Equal:

ReX=Y

Y may be any array. X may be any array. R is Boolean. [JCT is an implicit argument of
Equal.

If X and Y are character, then R is 1 if they are the same character. If X is character and
Y is numeric, or vice-versa, then R is 0.

If X and Y are numeric, then R is 1 if X and Y are within comparison tolerance of each
other.

For real numbers X and Y, X is considered equal to Y if (| X-Y) is not greater than
gcT<CIxyriy.

For complex numbers X=Y is 1 ifthe magnitude of X-Y does not exceed [OCT times
the larger of the magnitudes of X and Y; geometrically, X=Y if the number smaller in
magnitude lies on or within a circle centred on the one with larger magnitude, hav-
ing radius [JCT times the larger magnitude.

reQot=|A

258 Dyalog APL/W Programmer's Guide & Language Reference

Examples

3=3.1 3 72 73
0100

a«<2+0j1x0CT

a
2J1E" 14

a=23j.00000000000001 23.0000000000001
10

'CAT'="'FAT'
011

'CAT'=1 2 3
000

'CAT'='C' 2 3
100

OCT<«1E~10
1=1.000000000001

1=1.0000001

Excluding: ReX~Y

X must be a scalar or vector. R is a vector of the elements of X excluding those ele-
ments which occur in Y taken in the order in which they occurin X.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.
OCT is an implicit argument of Excluding. Excluding is also known as Without.

Examples

"HELLO'~'GOODBYE"
HLL

"MONDAY' 'TUESDAY' 'WEDNESDAY'~'TUESDAY' 'FRIDAY'
MONDAY WEDNESDAY

5 10 15~110
15

For performance information, see "Search Functions and Hash Tables" on page 109.

Chapter 4: Primitive Functions 259

Execute (Monadic): Re«2Y

Y must be a simple character scalar or vector. IfY is an empty vector, it is treated as
an empty character vector. Y is taken to be an APL statement to be executed. R is
the result of the last-executed expression. Ifthe expression has no value, then ¢Y has
no value. IfY is an empty vector or a vector containing only blanks, then ¢Y has no
value.

IfY contains a branch expression which evaluates to a non-empty result, R does not
yield a result. Instead, the branch is effected in the environment from which the
Execute was invoked.

Examples
2'2+2"'
4
b=9'2+2"
1
A
1 23
b 5 6
2'A’
1 23
4L 5 6
¢'A<2|T110TS ¢ »0p=A o A'
0
A
0

Execute (Dyadic): R«X2Y

Y must be a simple character scalar or vector. IfY is an empty vector, it is treated as
an empty character vector. X must be a namespace reference or a simple character sca-
lar or vector representing the name of a namespace. Y is then taken to be an APL
statement to be executed in namespace X. R is the result of the last-executed
expression. Ifthe expression has no value, then X¢Y has no value.

Example
OSE ¢ 'ONL 9

260 Dyalog APL/W Programmer's Guide & Language Reference

Expand:

R«X\[K]Y

Y may be any array. X is a simple integer scalar or vector. The axis specification is
optional. Ifpresent, K must be a simple integer scalar or unit vector. The value of K
must be an axis of Y. Ifabsent, the last axis of Y is implied. The form R«XXY implies
the first axis. If'Y is a scalar, it is treated as a one-element vector.

If Y has length 1 along the Kt (or implied) axis, it is extended along that axis to
match the number of positive elements in X. Otherwise, the number of positive ele-
ments in X must be the length of the K (or implied) axis of Y.

R is composed from the sub-arrays along the K axis of Y. If X[I] (an element of X)
is the Jth positive element in X, then the J™ sub-array along the Kt axis of Y is rep-
licated X[I] times. If X[I] is negative, then a sub-array of fill elements of Y
(ce>Y) isreplicated | X[I] times and inserted in relative order along the Kt axis
ofthe result. If X[I] is zero, it is treated as the value ~1. The shape of R is the shape
of Y except that the length of the KM axisis +/1[| X.

Examples
0\10

1 72 3 74 5\'A'
A AAA AAAAA

aN
o W

T2 20 1\M

-
oo
oo
ON -
a1 N
oo
o w

1 0 1xM

o
gaonN
O w

1 0 1\[1]M

o
g oOoN
O w

1 72 1\(1 2)(3 4 5)
12 00 00 345

Chapter 4: Primitive Functions 261

Expand First: R<XXY

The form R«XXY implies expansion along the first axis whereas the form R<X\Y
implies expansion along the last axis (columns). See "Expand:" above.

Exponential: RexY
Y must be numeric. R is numeric and is the Yth power of e, the base of natural log-
arithms.

Example
x1 0

2.718281828 1

x0j1 132
0.5403023059J0.8414709848 ~1.131204384J2.471726672

1+x00j1 A Euler Identity

Factorial: RelY

Y must be numeric excluding negative integers. R is numeric. R is the product of the
first Y integers for positive integer values of Y. For non-integral values of Y, ! Y is
equivalent to the gamma function of Y+1.

Examples

112345
12 6 24 120

171.5 0 1.5 3.3
~3.544907702 1 1.329340388 8.85534336

1031 132
0.4980156681J°0.1549498283 0.1122942423J0.3236128855

262 Dyalog APL/W Programmer's Guide & Language Reference

Find: R«XeY

X and Y may be any arrays. R is a simple Boolean array the same shape as Y which
identifies occurrences of X within Y.

If the rank of X is smaller than the rank of Y, X is treated as if it were the same rank
with leading axes of size 1. For example a vector is treated as a 1-row matrix.

If the rank of X is larger than the rank of Y, no occurrences of X are found in Y.

OCT and [IDCT are implicit arguments to Find.

Examples

"AN'€ 'BANANA'
010100

"ANA '€ 'BANANA'
010100

'BIRDS' 'NEST'e'BIRDS' 'NEST' 'SOUP'
100

MAT
IS YOU IS
OR IS YOU
ISN'T

—
X

OO0 O0O<OOOoIm
0008000>
<DOO|"\-<DOD—‘_|
OOO%OOO

1
0
1

oNoNe]
oNoNe]
OO - OO -
H
oOooOwnmwooowm

(o Ne N
oOoo
oOoo

Chapter 4: Primitive Functions 263

First:

(OML) R«3Y or R«tY

See function "Disclose:" on page 248.

Floor:

RelY

Y must be numeric.

For real numbers, R is the largest integer value less than or equal to Y within the com-
parison tolerance [ICT.

Examples
[72.3 0.1 100 3.3
~3 0 100 3

0.5 + 0.4 0.5 0.6
011

For complex numbers, R depends on the relationship between the real and imaginary
parts of the numbers in Y.

l1j3.2 3.3j2.5 ~3.3j72.5
1J3 3J2 ~37°3

The following (deliberately) simple function illustrates one way to express the rules
for evaluating complex Floor.

vV fl«CpxFloor cpxssasb
[1] A Complex floor of scalar complex number (a+ib)
[2] a b<9 1locpxs

[3] :If 1>(a-lLa)+b-|b
[4] fle(la)+0J1x|b
[5] :Else
[6] :If (a-La)<b-Lb
[7] fle(lLa)+0J1x1+|b
[8] :Else
[9] fle(1+La)+0J1x|b
[10] tEndIf
[11] :EndIf
\

CpxFloor”1j3.2 3.3j2.5 ~3.3j72.5
1J3 3J2 ~3773

0CT is an implicit argument of Floor.

264 Dyalog APL/W Programmer's Guide & Language Reference

Format (Monadic): Re3Y

Y may be any array. R is a simple character array which will display identically to
the display produced by Y. The result is independent of JPW. IfY is a simple char-
acter array, then Ris Y.

Example
+B+«3A«2 6p'HELLO PEOPLE'
HELLO
PEOPLE
B = A
1

IfY is a simple numeric scalar, then R is a vector containing the formatted number
without any spaces. A floating point number is formatted according to the system
variable JPP. [PP is ignored when formatting integers.

Examples
OppP«5
pC«310
0
pC«310
2
C
10
pC«312.34
5
C
12.34%
5123456789
123456789
5123.456789
123.46

Scaled notation is used if the magnitude of the non-integer number is too large to rep-
resent with [JPP significant digits or if the number requires more than five leading
zeroes after the decimal point.

Chapter 4: Primitive Functions 265

Examples

$123456.7
1.2346E5

$0.0000001234
1.234%E77

If'Y is a simple numeric vector, then R is a character vector in which each element of
Y is independently formatted with a single separating space between formatted ele-
ments.

Example

pC«3~123456 1 22.5 0.000000667 5.00001
27

C
“1.2346E5 1 22.5 "6.67E77 5

IfY is a simple numeric array rank higher than one, R is a character array with the
same shape as Y except that the last dimension of Y is determined by the length of the
formatted data. The format width is determined independently for each column of Y,
such that:

a. the decimal points for floating point or scaled formats are aligned.

b. the E characters for scaled formats are aligned, with trailing zeros added to
the mantissae if necessary.

c. integer formats are aligned to the left of the decimal point column, if any, or
right-adjusted in the field otherwise.

d. each formatted column is separated from its neighbours by a single blank
column.

e. the exponent values in scaled formats are left-adjusted to remove any
blanks.

Examples
C<22 ~0.000000123 2.34 212 123456 6.00002 O

pC«3s2 2 3pC
2 2 29
C
22 ~1.2300E77 2.3400EO
212 1.2346E5 6.0000EO
0 2.2000E1 ~1.2300E77

2.34% 72.1200E2 1.2346E5

266 Dyalog APL/W Programmer's Guide & Language Reference

IfY is non-simple, and all items of Y at any depth are scalars or vectors, then R is a
vector.

Examples
B«3A«'ABC' 100 (1 2 (3 &4 5)) 10

pA
"

=A
-3

pB
26

=B
1

A

ABC 100 1 2 3 45 10

B
ABC 100 1 2 3 4 5 10

By replacing spaces with #, it is clearer to see how the result of 3 is formed:

AABCAAL00ANLA2AAZAYABAAALQ

Chapter 4: Primitive Functions 267

IfY is non-simple, and all items of Y at any depth are not scalars, then R is a matrix.

Example
D«sC«1 'AB' (2 2pi+14) (2 2 3p'CDEFGHIJKLMN')

C
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pC
"
=C
-2
D
1 AB 2 3 CDE
4 5 FGH
IJK
LMN
pD
5 16
=D
1

By replacing spaces with 4, it is clearer to see how the result of # is formed:
1/\/\AB/\/\2/\3/\/\CDE/\
AAAAAAAL}ASAAFGHA
AAAAAAAAAAAANAANANAN
/\/\/\/\/\/\/\/\/\/\/\/\IJKA
/\/\/\/\/\/\/\/\/\/\/\/\LMN/\

OPP is an implicit argument of Monadic Format.

268 Dyalog APL/W Programmer's Guide & Language Reference

Format (Dyadic): ReX3Y

Y must be a simple real (non-complex) numeric array. X must be a simple integer sca-
lar or vector. R is a character array displaying the array Y according to the spec-
ification X. R hasrank 1[ppY and “14pRis “14¢pY.Ifany element of Y is complex,
dyadic 3 reportsa DOMAIN ERROR.

Conformability requires that if X has more than two elements, then pX must be
2x~11pY.If X contains one element, it is extended to (2x~11pY)p0,X. IfX con-
tains 2 elements, it is extended to (2x~11pY)pX.

X specifies two numbers (possibly after extension) for each column in Y. For this pur-
pose, scalar Y is treated as a one-element vector. Each pair of numbers in X identifies
a format width (W) and a format precision (P).

If P is 0, the column is to be formatted as integers.

Examples
503 2 3p1b
1 2 3
4 5 6

4 0s1.1 2 "4 2.547
1 2 4 3

If P is positive, the format is floating point with P significant digits to be displayed
after the decimal point.
Example

b 1s1.1 2 "4 2.547
1.1 2.074.0 2.5

If P is negative, scaled format is used with | P digits in the mantissa.

Example

7 35 15 155 1555
5.00E0 1.50E1 1.55E2 1.56E3

IfW is 0 or absent, then the width ofthe corresponding columns of R are determined
by the maximum width required by any element in the corresponding columns of'Y,
plus one separating space.

Example

3%2 3p10 15.2346 "17.1 2 3 4
10.000 15.235 717.100
2.000 3.000 4+.000

Chapter 4: Primitive Functions 269

If a formatted element exceeds its specified field width when W>0, the field width for
that element is filled with asterisks.

Example

306 235 3 2p10.1 15 1001 22.357 101 1110.1
10 15.00
xxx 22.36

101 *x*x*x%x %%

If the format precision exceeds the internal precision, low order digits are replaced by
the symbol '_".
Example

2632100
1267650600228229

p2652%100
59

0 20%=+3
0.3333333333333333___ _

0 720%=3
3.333333333333333____E™1

The shape of R is the same as the shape of Y except that the last dimension of Y is the
sum of the field widths specified in X or deduced by the function. IfY is a scalar, the
shape of R is the field width.

p5 2 3 2 3 Lpr2h
2 320

270 Dyalog APL/W Programmer's Guide & Language Reference

Grade Down (Monadic): R«YY

Y must be a simple character or simple numeric array of rank greater than 0. R isan
integer vector being the permutation of 114 pY that places the sub-arrays of Y along
the first axis in descending order. The indices of any set of identical sub-arrays in Y
occur in R in ascending order.

IfY is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to
the first element and least weight being given to the last element.

Example
M
2532
3411
2545
2532
2534
M
23514
MLYM;]
3411
2545
2534
2532
2532

IfY is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters
in [JAV (Classic Edition).

0IO isan implicit argument of Grade Down.

Chapter 4: Primitive Functions 271

Note that character arrays sort differently in the Unicode and Classic Editions.

Example
M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
¥M ¥M
2314 3142
MLYM;] MLVM;]
porridge Porridge
Porridge Goldilocks
Goldilocks 3 bears
3 bears porridge

Grade Down (Dyadic):

ReXVY

Y must be a simple character array of rank greater than 0. X must be a simple char-
acter array of rank 1 or greater. R is a simple integer vector of shape 1tpY con-
taining the permutation of 11 1 pY that places the sub-arrays of Y along the first axis
in descending order according to the collation sequence X. The indices of any set of
identical sub-arrays in Y occur in R in ascending order.

If X is a vector, the following identity holds:
XYY <> yXuY

A left argument of rank greater than 1 allows successive resolution of duplicate order-
ings in the following way.

Starting with the last axis:

e The characters in the right argument are located along the current axis of
the left argument. The position of the first occurrence gives the ordering
value of the character.

e If a character occurs more than once in the left argument its lowest position
along the current axis is used.

o If a character of the right argument does not occur in the left argument, the
ordering value is one more than the maximum index of the current axis - as
with dyadic iota.

272 Dyalog APL/W Programmer's Guide & Language Reference

The process is repeated using each axis in turn, from the last to the first, resolving
duplicates until either no duplicates result or all axes have been exhausted.

For example, if index origin is 1:

Left argument: Right argument:
abc ab
ABA ac

Aa

Ac

Along last axis:

Character: Value: Ordering:

ab 12 3

ac 13 =1 <-duplicate ordering with
Aa 11 4

Ac 13 =1 <-respect to last axis.

Duplicates exist, so resolve these with respect to the first axis:

Character: Value: Ordering:

ac 11 2
Ac 2 1 1

So the final row ordering is:

ab
ac
Aa
Ac

= EFENw

That is, the order of rows is 4 2 1 3 which corresponds to a descending row sort of:

Ac
ac
ab
Aa

FWN B~

Chapter 4: Primitive Functions 273

Examples
pS1
2 27
S1

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz

S2

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz

S3

AaBbCcDdEeF fGgHhIiJjKkL LMmNNnOoPpQqRrSsTtUuVvWwXxYyZz

Skt

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghi jklmnopgrstuvwxyz
abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

The following results are tabulated for comparison:

X X[S1yX;] X[S2yX;] X[S3yX;] X[S4yX;]
FIRsST TAPE rAT TAPE TAPE
TAP TAP fIRST TAP TAP
RATE RATE TAPE rAT RATE
FiRST rAT TAP RATE rAT
FIRST RAT RATE RAT RAT
rAT MAT RAT MAT MAT
fIRST fIRST MAT fIRST FIRsST
TAPE FiRST FiRST FiRST FiRST
MAT FIRsST FIRsST FIRsST FIRST
RAT FIRST FIRST FIRST fIRST
(IO isan implicit argument of Grade Down.
Grade Up (Monadic): R«AY

Y must be a simple character or simple numeric array of rank greater than 0. R is an
integer vector being the permutation of 114 pY that places the sub-arrays along the

first axis in ascending order.

IfY is a numeric array of rank greater than 1, the elements in each of the sub-arrays
along the first axis are compared in ravel order with greatest weight being given to

the first element and least weight being given to the last element.

274 Dyalog APL/W Programmer's Guide & Language Reference

Examples

422.5 1 15 3 74
52431

M

-
N
[o)6}

N
N W
+ F

M
321

IfY is a character array, the implied collating sequence is the numerical order of the
corresponding Unicode code points (Unicode Edition) or the ordering of characters
in JAV (Classic Edition).

(IO isan implicit argument of Grade Up

Note that character arrays sort differently in the Unicode and Classic Editions.

M
Goldilocks
porridge
Porridge
3 bears
Unicode Edition Classic Edition
AM AM
4132 2 413
MLAM;] MLAM;]
3 bears porridge
Goldilocks 3 bears
Porridge Goldilocks
porridge Porridge

Chapter 4: Primitive Functions 275

Grade Up (Dyadic): R<XAY

Y must be a simple character array of rank greater than 0. X must be a simple char-
acter array ofrank 1 or greater. R is a simple integer vector being the permutation of
111pY that places the sub-arrays of Y along the first axis in ascending order accord-
ing to the collation sequence X.

If X is a vector, the following identity holds:
XAY <> AXrY

If X is a higher order array, each axis of X represents a grading attribute in increasing
order of importance. Ifa character is repeated in X, it is treated as though it were
located at the position in the array determined by the lowest index in each axis for all
occurrences of the character. The character has the same weighting as the character
located at the derived position in X.

Examples

(2 2p'ABBA') A 'AB'[?5 2p2] A A and B are
equivalent
12345

Jdisplay A«2 14p' abcdegiklmnrt ABCDEGIKLMNRT'

T
{ abcdegiklmnrt
ABCDEGIKLMNRT

V<'Ab' 'AB' 'aba' 'ABA' 'abaca' 'abecedarian'
V,«'Abelian' 'black' 'blackball' 'black belt'
V,«<'blacking' 'Black Mass'

Jdisplay M«tv

|

JAb

AB

aba

ABA

abaca
abecedarian
Abelian
black
blackball
black belt
blacking
Black Mass

276 Dyalog APL/W Programmer's Guide & Language Reference

ldisplay M (M[(,A)AM;1) (ML(,8A)AM;]1) (M[AAM;])
I I I I
VAb Vaba ‘aba VAb
AB abaca abaca AB
aba abecedarian abecedarian aba
ABA black Ab ABA
abaca black belt Abelian abaca
abecedarian blackball AB abecedarian
Abelian blacking ABA Abelian
black Ab black black
blackball Abelian black belt black belt
black belt AB blackball Black Mass
blacking ABA blacking blackball
Black Mass Black Mass Black Mass blacking

e
Greater: ReX>Y

Y must be numeric. X must be numeric.

and X=Y is 0. Otherwise R is 0.

OCT is an implicit argument of Greater.

Examples
12345 >2

00111
OcT«1E~10

1 1.00000000001 1.000000001 > 1

001

R is Boolean. Ris 1 if X is greater than Y

Chapter 4: Primitive Functions 277

Greater Or Equal: ReX2Y

Y must be numeric. X must be numeric. R is Boolean. Ris 1 if X is greater than Y or
X=Y. Otherwise R is 0.

0CT is an implicit argument of Greater Or Equal.

Examples
12345 >3
00111
OCT«1E™10
121
1
1>1.00000000001
1
1>1.00000001
0
Identity: RerY

Y may be any array. The result R is the argument Y.

Example

278

Dyalog APL/W Programmer's Guide & Language Reference

Index:

R«{X}DY

Dyadic case

X must be a scalar or vector of depth <2 ofintegers each 2[JI0. Y may be any array.
In general, the result R is similar to that obtained by square-bracket indexing in that:

(I J ...0%)=Y[I;J;...]

The length of left argument X must be less than or equal to the rank of right argument
Y. Any missing trailing items of X default to the index vector of the corresponding
axisof Y.

Note that in common with square-bracket indexing, items of the left argument X may
be of any rank and that the shape of the result is the concatenation of the shapes of
the items of the left argument:

(pXOY) = t,/p"X
Index is sometimes referred to as squad indexing.
Note that index may be used with selective specification.

0IO isan implicit argument of index.

Chapter 4: Primitive Functions

279

Examples

010+«1

VEC«+111 222 333 4uh
3[VEC

333
(c4 3)[VEC
L4y 333
(c2 3p3 1 4 1 2 3)[VEC
333 111 Lh4k
111 222 333
0«MAT«101"13 4
11 12 13 14
21 22 23 24
31 32 33 34
2 1[IMAT
21
2[IMAT
21 22 23 24
3(2 1)[MAT
32 31
(2 3)1[MAT
21 31
(2 3)(,1)OMAT
21
31
p(2 1p1)(3 4p2)[MAT
2 3 &
06 B[MAT
0
(3(2 1)[IMAT)<«0 © MAT
11 12 13 14
21 22 23 24
0 0 33 34

A Selective assignment.

280 Dyalog APL/W Programmer's Guide & Language Reference

Monadic case
IfY is an array, Y is returned.

IfY is arefto an instance of a Class with a Default property, all elements of the
Default property are returned. For example, if It em is the default property of
MyClass,and imc is an Instance of MyCl ass, then by definition:

imc.Item=[imc

NONCE ERROR is reported if the Default Property is Keyed, because in this case
APL has no way to determine the list of all the elements.

Note that the values of the index set are obtained or assigned by calls to the cor-
responding PropertyGet and PropertySet functions. Furthermore, if there is a
sequence of primitive functions to the left of the Index function, that operate on the
index set itself (functions such as dyadic p, t, ¥, 2) as opposed to functions that
operate on the values of the index set (functions such as +,[, L ,p "), calls to the
PropertyGet and PropertySet functions are deferred until the required index set has
been completely determined. The full set of functions that cause deferral of calls to
the PropertyGet and PropertySet functions is the same as the set of functions that
applies to selective specification.

If for example, CompF i L e is an Instance of a Class with a Default Numbered Prop-
erty, the expression:

1t¢[ICompFile

would only call the PropertyGet function (for CompF i L e) once, to get the value of
the last element.

Note that similarly, the expression
10000p[JCompFile

would call the PropertyGet function 10000 times, on repeated indices if CompF i le
has less than 10000 elements. The deferral of access function calls is intended to be
an optimisation, but can have the opposite effect. You can avoid unnecessary repet-
itive calls by assigning the result of [] to a temporary variable.

Chapter 4: Primitive Functions 281

Index with Axes: R«{X}OL[K]Y

X must be a scalar or vector of depth <2, of integers each 2[1I0. Y may be any array.
K is a simple scalar or vector specifying axes of Y. The length of K must be the same
as the length of X:

(p,X) = p,K

In general, the result R is similar to that obtained by square-bracket indexing with
elided subscripts. Items of K distribute items of X along the axes of Y. For example:

I J 001 3]Y <« Y[I;;J]

Note that index with axis may be used with selective specification. JIO is an
implicit argument of index with axis.

Examples
010+1

0«CUBE«101"12 3 4
111 112 113 114
121 122 123 124
131 132 133 134

211 212 213 214
221 222 223 224
231 232 233 234

2[[[1]CUBE
211 212 213 214
221 222 223 224
231 232 233 234

2[][3]CUBE

112 122 132

212 222 232
CUBE[::;2] = 2[J[3]CUBE
(1 3)4[[2 3]CUBE

114 134

214 234

CUBE[s1 354] = (1 3)4[[2 3]CUBE

282 Dyalog APL/W Programmer's Guide & Language Reference

(2(1 3)0[1 3]JCUBE)«0 o CUBE A Selective assignment.
111 112 113 114
121 122 123 124
131 132 133 134

0 212 0 214
0 222 0 224
0 232 0 234
Index Generator: Re1Y

Y must be a simple scalar or vector array of non-negative numbers. R is a numeric
array composed of the set of all possible coordinates of an array of shape Y. The
shape of R is Y and each element of R occurs in its self-indexing position in R. In par-
ticular, the following identity holds:

1Y <> (wY)[1Y]

0IO0 is an implicit argument of Index Generator. This function is also known as Inter-

val.
Examples
gdIo
1
pt0
0
15
12345
12 3
11 12 13
21 22 23
~A<2 Lp'MAINEXIT'
MAIN
EXIT
A[1pA]
MAIN

EXIT

Chapter 4: Primitive Functions 283

(10«0
15
012 34
12 3
00 01 02
10 11 12
Al1pAl]
MAI
EXIT

Index Of:

ReX1Y

Y may be any array. X may be any vector. R is a simple integer array with the same
shape as Y identifying where elements of Y are first found in X. Ifan element of Y can-
not be found in X, then the corresponding element of R will be JI0+pX.

Elements of X and Y are considered the same if X=Y returns 1 for those elements.
(10 and [OCT are implicit arguments of Index Of.
Examples

010+«1

2 431411 2345
L1326

"CAT' 'DOG' 'MOUSE'i1'DOG' 'BIRD'
2 4

For performance information, see "Search Functions and Hash Tables" on page 109.

284 Dyalog APL/W Programmer's Guide & Language Reference

Indexing: R«X[Y]

X may be any array. Y must be a valid index specification. R is an array composed of
elements indexed from X and the shape of X is determined by the index specification.

Bracket Indexing does not follow the normal syntax of a dyadic function.
0IO0 is an implicit argument of Indexing.

Three forms of indexing are permitted. The form used is determined by context.

Simple Indexing

For vector X, Y is a simple integer array composed of items from the set 1 pX.

R consists of elements selected according to index positions in Y. R has the same
shape as Y.

Examples
A<10 20 30 40 50

A[2 3p1 11 2 2 2]
10 10 10
20 20 20

A[3]
30

'ONE' 'TWO' 'THREE'[2]
TWO

For matrix X, Y is composed of two simple integer arrays separated by the semicolon
character (). The arrays select indices from the rows and columns of X respectively.

Examples

+M<2 4p10x18
10 20 30 40
50 60 70 80

M[2:3]
70

Chapter 4: Primitive Functions 285

For higher order array X, Y is composed of a simple integer array for each axis of X
with adjacent arrays separated by a single semicolon character (;). The arrays select
indices from the respective axes of X, taken in row-major order.

Examples

FA<2 3 4pl0x124
10 20 30 40
50 60 70 80
90 100 110 120

130 140 150 160
170 180 190 200
210 220 230 240

Al1:131]
10

A[2:3 234 1]
240 210
200 170

If an indexing array is omitted for the Kth axis, the index vector 1 (pX) [K] is
assumed for that axis.

Examples

Als23]
50 60 70 80
170 180 190 200

M
10 20 30 40
50 60 70 80

ML]
10 20 30 40
50 60 70 80

M[1;1]
10 20 30 40

M[s1]
10 50

286 Dyalog APL/W Programmer's Guide & Language Reference

Choose Indexing

The index specification Y is a non-simple array. Each item identifies a single element
of X by a set of indices with one element per axis of X in row-major order.
Examples

M
10 20 30 40
50 60 70 80

Mlet 2]
20

M[2 2pc2 4]
80 80
80 80

ME(2 1)(1 2)]
50 20

A scalar may be indexed by the enclosed empty vector:
S«'7'
S[3pc10]

11

Simple and Choose indexing are indistinguishable for vector X:

V<10 20 30 40

V[e2]
20

€2
2

vi2]

20

Chapter 4: Primitive Functions 287

Reach Indexing

The index specification Y is a non-simple integer array, each of whose items reach
down to a nested element of X. The items of an item of Y are simple vectors (or sca-
lars) forming sets of indices that index arrays at successive levels of X starting at the
top-most level. A set of indices has one element per axis at the respective level of
nesting of X in row-major order.

Examples

G<('ABC' 1)('DEF" 2)('GHI' 3)('JKL' 4)
G«<2 3pG,('MNO' 5)('PQR' 6)
G

ABC 1 DEF 2 GHI 3

JKL 4 MNO 5 PQR 6

GL((1 2)1)((2 3)2)]
DEF 6

G[2 2p<(2 2)2]

oo
oo

Gleet 1]
ABC 1

G[c1 1]
ABC 1

V<,G

V[ecet]
ABC 1

V[e1]
ABC 1

V[1]
ABC 1

288 Dyalog APL/W Programmer's Guide & Language Reference

Intersection: R«XnY

Y must be a scalar or vector. X must be a scalar or vector. A scalar X or Y is treated as
a one-element vector. R is a vector composed of items occurring in both X and Y in
the order of occurrence in X. Ifan item is repeated in X and also occurs in Y, the item
is also repeated in R.

Items in X and Y are considered the same if X=Y returns 1 for those items.
OCT is an implicit argument of Intersection.

Examples

"ABRA'n'CAR'
ARA

1 'PLUS' 2 n 15
12

For performance information, see "Search Functions and Hash Tables" on page 109.

Chapter 4: Primitive Functions 289

Left:

ReXaY

X and Y may be any arrays.

The result R is the left argument X.

Example

42-'abc' 1 2 3
42

Note that when - is applied using reduction, the derived function selects the first
sub-array of the array along the specified dimension. This is implemented as an
idiom.

Examples
4/1 2 3

mat«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
-#mat A first row

scent
4/mat A first column

scarf

-4/[2]2 3 4pi24 A first row from each plane
1 2 3 4
13 14 15 16

Similarly, with expansion:

-\mat
SSSSs
ccccece
aaaaa
rerrr
fffff
-Xmat
scent
scent
scent
scent
scent

290 Dyalog APL/W Programmer's Guide & Language Reference

Less: ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris 1 if X
isless than Y and X=Y is 0. Otherwise R is 0.

OCT is an implicit argument of Less.

Examples

(2 4) (6 8 10) < 6
11 000

OCT«1E710

1 0.99999999999 0.9999999999<1
001

Less Or Equal: ReX<Y

Y may be any numeric array. X may be any numeric array. R is Boolean. Ris 1 if X
is less than Y or X=Y. Otherwise R is 0.

OCT is an implicit argument of Less Or Equal.

Examples
2468 10 < 6

11100
dcT<1E~10

1 1.00000000001 1.00000001 < 1
110

Chapter 4: Primitive Functions 291

Logarithm: R«Xe®Y

Y must be a positive numeric array. X must be a positive numeric array. X cannot be 1
unless Y is also 1. R is the base X logarithm of Y.

Note that Logarithm (dyadic @) is defined in terms of Natural Logarithm (monadic &)
as:

XeY«>(8Y)zreX

Examples

102100 2
2 0.3010299957

2 10e0J1 132
0J2.266180071 0.3494850022J0.4808285788

Magnitude: Re<|Y

Y may be any numeric array. R is numeric composed of the absolute (unsigned)
values of Y.

Note that the magnitude of a complex number (@ +ib) is defined to be da®+b?

Examples

[2 73.4 0 ~2.7
2 3.4 0 2.7

1354

292

Dyalog APL/W Programmer's Guide & Language Reference

Match:

ReX=Y

Y may be any array. X may be any array. R isa simple Boolean scalar. If X is iden-
tical to Y, then Ris 1. Otherwise R is 0.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

OCT is an implicit argument of Match.

Examples

8=10
1

[} E 1 O
0

A
THIS
WORD

A=2 4p'THISWORD'
1

A=110
0

+B<A A
THIS THIS
WORD WORD

A=>oB
1

(0OpA)=0p8B
0

'=:OpB

1111
1111

1 I=DOpA

Chapter 4: Primitive Functions 293

Matrix Divide: R«XBY

Y must be a simple numeric array ofrank 2 or less. X must be a simple numeric array
ofrank 2 orless. Y must be non-singular. A scalar argument is treated as a matrix
with one-element. IfY isa vector, it is treated as a single column matrix. If X is a vec-
tor, it is treated as a single column matrix. The number of rows in X and Y must be
the same. Y must have at least the same number of rows as columns.

R is the result of matrix division of X by Y. That is, the matrix product Y+ . xR is X.
R is determined such that (X-Y+.xR)*2 is minimised.
The shape of Ris (14pY),14pX.
Examples
0pP<«5
B

N -~ W
o U1 =
010 F

35 89 79 H B
2.1444 8.2111 5.0889

A
35 36
89 88
79 75

AHB
2.1444 2.,1889
8.2111 7.1222
5.0889 5.5778

294 Dyalog APL/W Programmer's Guide & Language Reference

If there are more rows than columns in the right argument, the least squares solution
results. In the following example, the constants a and b which provide the best fit for
the set of equations represented by P=a + bQ are determined:

Q

el el
CCOLF WN -~

P
12.03 8.78 6.01 3.75 70.31 72.79

PEHQ
14.941 72.9609

Example: linear regression on complex numbers

x«j#750+?2 13 4p100
y«(x+.x3 4 5 6) + j#0.0001x750+?2 13p100

pX
13 4

Py
13

y B x

3J0.000011066 4J~0.000018499 5J0.000005745 6J0.000050328
A i.e. yBHx recovered the coefficients 3 4 5 6

Chapter 4: Primitive Functions 295

Matrix Inverse: R«BEY

Y must be a simple array of rank 2 or less. Y must be non-singular. If'Y is a scalar, it
is treated as a one-element matrix. IfY is a vector, it is treated as a single-column
matrix. Y must have at least the same number of rows as columns.

R is the inverse of Y if Y is a square matrix, or the left inverse of Y if Y is not a square
matrix. Thatis, R+.xY is an identity matrix.

The shape of R is ¢pY.

Examples

+A<—EM
0.3125 0.09375
~0.125 0.0625

Within calculation accuracy, A+ . xM is the identity matrix.

A+, xM

O -
= O

je«{a<0 ¢ a+0J1xw}
x<j£750+?72 5 50100
X
-37J741 25J015 ~5J709 3J020 ~29J041
“46J026 173724 173746 43J023 T12J718
1J013 33J025 "47J049 457714 2J726
17J048 ~50J022 ~12J025 "44J015 ~9J743
18J013 8J038 43J723 34J°07 2J026
pX
55
jd«{°.==1w} A identity matrix of order w
[/,1 (id 1tpx) - x+.xEx
3.66384E716

296

Dyalog APL/W Programmer's Guide & Language Reference

Maximum: ReXTY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
larger of the numbers X and Y.

Example

72.01 0.1 15.3 [73.2 "1.1 22.7
“2.01 0.1 22.7

Membership: R«XeY

Y may be any array. X may be any array. R is Boolean. An element of R is 1 ifthe
corresponding element of X can be found in Y.

An element of X is considered identical to an element in Y if X=Y returns 1 for those
elements.

OCT is an implicit argument of Membership.

Examples

"THIS NOUN' € 'THAT WORD'
110010100

"CAT' 'DOG' 'MOUSE' € 'CAT' 'FOX' 'DOG' 'LLAMA'
110

For performance information, see "Search Functions and Hash Tables" on page 109.

Minimum: ReXLY

Y may be any numeric array. X may be any numeric array. R is numeric. R is the
smaller of X and Y.
Example

“2.1 0.1 15.3 | 3.2 1 22
3.2 0.1 15.3

Minus:

ReX-Y

See "Subtract:" on page 317.

Chapter 4: Primitive Functions 297

Mix: (OML) R«t[K]Y or R«a[K]Y

The symbol chosen to represent Mix depends on the current Migration Level.
If(ML <2, Mix is represented by the symbol: *.
If(ML 22, Mix is represented by the symbol: >.

Y may be any array. All of the items of Y must be scalars and/or arrays of the same
rank. It is not necessary that nonscalar items have the same shape.

K is an optional axis specification. If present it must be a scalar or unit vector. The
value of K must be a fractional number indicating the two axes of Y between which
new axes are to be inserted. Ifabsent, new ones are added at the end.

R is an array composed from the items of a Y assembled into a higher order array with
one less level of nesting. Ifitems of Y have different shapes, each is padded with the
corresponding prototype to a shape that represents the greatest length along each
axis ofall items in Y. The shape of R is the shape of Y with the shape of a typical
(extended) item of Y inserted between the | Kth and the [Kth axes of Y.

Examples
t(1)(1 2)(1 2 3)

-
NN O
w oo

+[0.5](1) (1 2) (1 2 3)

OO
ON —
WN -~

A«<('andy' 19)('geoff' 37)('pauline' 21)

tA
andy 19
geoff 37
pauline 21

t+[0.5]A
andy geoff pauline
19 37 21

298 Dyalog APL/W Programmer's Guide & Language Reference

Multiply:

ReXxY

Y may be any numeric array. X may be any numeric array. R is the arithmetic prod-
uctof X and Y.

This function is also known as Times.

Example

3210x2496
6 890

2j3x.3j.5 1j2 3j4 .5
~0.9J1.9 ~4J7 "6J17 1J1.5

Nand: ReXAY
Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value ofR
is the truth value of the proposition "not both X and Y", and is determined as follows:

X Y R
0 0 1
0 1 1
1 0 1
1 1 0
Example
(0 1)(1 0) A (0 0)(1 1)
11 01
Natural Logarithm: ReeY

Y must be a positive numeric array. R is numeric. R is the natural (or Napierian) log-
arithm of Y whose base is the mathematical constant e=2.71828....

Example

el 2
0 0.6931471806

®2 2p0j1 1j2 23j3 3j4
0.000000000J1.570796327 0.8047189562J1.107148718
1.282474679J0.9827937232 1.6094379120J0.927295218

Chapter 4: Primitive Functions 299

Negative:

Re-Y

Y may be any numeric array. R is numeric and is the negative value of Y. For complex
numbers both the real and imaginary parts are negated.
Example
-4 20 73 75
4 72 035

-1j2 7233 4J75
“1J72 2373 "4J5

Nor

ReXVY

Y must be a Boolean array. X must be a Boolean array. R is Boolean. The value of R
is the truth value of the proposition "neither X nor Y", and is determined as follows:

X Y R

0 0 1

0 1 0

1 0 0

1 1 0
Example

0011VvO0101
1000

Not

Re~Y

Y must be a Boolean array. R is Boolean. The value of RisOifYis1,and Ris1ifY
is 0.
Example

~0 1
10

300 Dyalog APL/W Programmer's Guide & Language Reference

Not Equal: ReX#Y

Y may be any array. X may be any array. R isBoolean. Ris 0 if X=Y. Otherwise R
is1.

For Boolean X and Y, the value of R is the “exclusive or” result, determined as fol-

lows:
X Y R
0 0 0
0 1 1
1 0 1
1 1 0

OCT is an implicit argument of Not Equal.

Examples

123 =#1.123
100

OCT«1E710

1#1 1.00000000001 1.0000001
001

1 2 3 #'CAT'
111

Not Match: ReX#Y

Y may be any array. X may be any array. R isa simple Boolean scalar. If X is iden-
tical to Y, then R is 0. Otherwise R is 1.

Non-empty arrays are identical if they have the same structure and the same values in
all corresponding locations. Empty arrays are identical if they have the same shape
and the same prototype (disclosed nested structure).

OCT is an implicit argument of Not Match.

Examples
8#£10

""#£10

Chapter 4: Primitive Functions 301
FA<c(13) 'ABC'
1 2 3 ABC
A#(13) 'ABC'
1
A#c(13) 'ABC'
0
0£0pA
1
(1t0pA)#c(0 0 0) '
1
Or, Greatest Common Divisor: ReXvY

Case 1: Xand Y are Boolean

R is Boolean and is determined as follows:

X Y R

0 0 0

0 1 1

1 0 1

1 1 1
Example

0011voO0101
0111

Case 2: X and Y are numeric (non-Boolean)

R is the Greatest Common Divisorof X and Y.

Examples

51 2

4321

15127 v 35140
7

rational«{tw 1+civw} A rational (QCT) approximation

A to floating array.
rational 0.4321 0.1234 6.66,

617 333 1 11

10000 5000 50 1 2 3

OCT is an implicit argument in case 2.

302 Dyalog APL/W Programmer's Guide & Language Reference

Partition:

(OML=23) R«X<[K]Y

Y may be any non scalar array.
X must be a simple scalar or vector of non-negative integers.

The axis specification is optional. Ifpresent, it must be a simple integer scalar or one
element array representing an axis of Y. Ifabsent, the last axis is implied.

R is an array of the elements of Y partitioned according to X.

A new partition is started in the result whenever the corresponding element in X is

greater than the previous one. Items in Y corresponding to Os in X are not included in
the result.

Examples
OML<3

Jdisplay 1 1 1 2 2 3 3 3c'NOWISTHE'

NOW IS THE

€
ldisplay 1 1 1 0 0 3 3 3c'NOWISTHE'
NOW THE
€
TEXT<«' NOW IS THE TIME '
ldisplay (' '"#TEXT)<TEXT
NOW IS THE TIME
€
ldisplay CMAT<[OFMT(' ',ROWS),COLS;NMAT
I
{ Jan Feb Mar
Cakes 0 100 150
Biscuits 0 0 350
Buns 0 1000 500

Chapter 4: Primitive Functions 303

Jdisplay (v#' '#CMAT)cCMAT A Split at blank cols.

t
Jan Feb Mar
Cakes 0 100 150
Biscuits 0 0 350
Buns 0 1000 500

Jdisplay N«4 Lpi16

|
+1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

Jdisplay 1 1 0 1eN

[
J >
12 H]
>
5 6 8]
9 10 12
13 14 16

Jdisplay 1 1 0 1<[1]N

- —

15 2 6 37 L 8

13 14 15 16

304 Dyalog APL/W Programmer's Guide & Language Reference

Partitioned Enclose: (OML<3) Re«X<[K]Y

Y may be any array. X must be a simple Boolean scalar or vector.

The axis specification is optional. If present, it must be a simple integer scalar or
one-clement vector. The value of K must be an axis of Y. Ifabsent, the last axis of Y
is implied.

X must have the same length as the Kth axis of Y. However, if X is a scalar or one-ele-
ment vector, it will be extended to the length of the Kth axis of Y.

R is a vector of items selected from Y. The sub-arrays identified along the Kth axis of
Y at positions corresponding to each 1 in X up to the position before the next 1 in X
(or the last element of X) become the successive items of Y. The length of R is +/X
(after possible extension).

Examples

010011000 <19
234 5 6789

1 01 c[1] 3 4pr12
34 910 11 12
78

[

2
56

1 001 c[2]3 4pr12

O 01 =
o
- w
N 00 +

Chapter 4: Primitive Functions 305

Pi Times:

R«oY

Y may be any numeric array. R is numeric. The value of R is the product of the math-
ematical constant 7=3.7/4159... (Pi),and Y.

Example

o0.5 1 2
1.570796327 3.141592654 6.283185307

o0J1
0J3.141592654

*00J1 A Euler
1

Pick:

R«X>Y

Y may be any array.
X is a scalar or vector of indices of Y, viz. 1pY.
R is an item selected from the structure of Y according to X.

Elements of X select from successively deeper levels in the structure of Y. The items
of X are simple integer scalars or vectors which identify a set of indices, one per axis
at the particular level of nesting of Y in row-major order. Simple scalar items in Y
may be picked by empty vector items in X to any arbitrary depth.

(IO isan implicit argument of Pick.
Examples
G<('ABC' 1)('DEF"' 2)('GHI' 3)('JKL' 4)
G«<2 3pG,('MNO' 5)('PQR"' 6)
G
ABC 1 DEF 2 GHI 3
JKL & MNO 5 PQR 6

((e2 1),1)>6
JKL

(e2 1)-G
JKL &

306

Dyalog APL/W Programmer's Guide & Language Reference

((2 1)1 2)-G

K
(5pc10)>10
10
Plus: ReX+Y
See "Add: " on page 224.
Power: ReXxY

Y must be a numeric array. X must be a numeric array. R is numeric. The value of R
is X raised to the power of Y.

IfY is zero, R is defined to be 1.
If X is zero, Y must be non-negative.

In general, if X is negative, the result R is likely to be complex.

Examples

2%2 "2
4 0.25

9 64%0.5
38

“27%3 2 1.2 .5
T19683 729 T42.22738244J730.67998919 0J5.196152423

Chapter 4: Primitive Functions 307

Ravel: Re«,Y

Y may be any array. R is a vector of the elements of Y taken in row-major order.

Examples
M
123
4 56
.M
123456
A
ABC
DEF
GHI
JKL
.
ABCDEFGHIJKL
p,10
1

Ravel with Axes: R«,[K]Y

Y may be any array.
K is either:

e A simple fractional scalar adjacent to an axis of Y, or
e A simple integer scalar or vector of axes of Y, or
e An empty vector.

Ravel with axis can be used with selective specification.
R depends on the case of K above.

IfK is a fraction, the result R is an array of the same shape as Y, but with a new axis of
length 1 inserted at the K'th position.

ppR «= 1+ppY¥
PR <> (1,pY)[AK,1ppY]

308 Dyalog APL/W Programmer's Guide & Language Reference

Examples

,[0.5]"ABC'
ABC

p,[0.5]"ABC'
13

,[1.5]"ABC'
A
B
c

p,[1.5]"'ABC'
31

MAT<3 4p112

p,[0.5]IMAT
1 34

p,[1.5]MAT
314

p,[2.5]IMAT
341

IfK is an integer scalar or vector of axes of Y, then:

e K must contain contiguous axes of Y in ascending order.
e R contains the elements of Y raveled along the indicated axes.

Note that if K is a scalar or single element vector, R <> Y.
ppR <> 1+(ppY)-p,K
Examples
M
3
7 8
11

13 14 15 16

17 18 19 20

21 22 23 24
pM

2 3 4

Chapter 4: Primitive Functions

309

,[1 2IM
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
17 18 19 20
21 22 23 24
p,[1 2IM
6 4
,[2 3IM
1 2 3 4 5 6 7

8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

p,[2 3IM

2 12

IfK is an empty vector a new last axis of length 1 is created.

pR <> (pY),1

Examples

Q1«'January’

Jdisplay Q1

'February' 'March'

January

February

March

ldisplay ,[10]Q1

January

February

March

310

Dyalog APL/W Programmer's Guide & Language Reference

Reciprocal: ResY

Y must be a numeric array. R is numeric. R isthe reciprocal of Y; thatis 1+Y. If
(DIV=0, +0 resultsin a DOMAIN ERROR. If[JDIV=1, +0 returns 0.

ODIV is an implicit argument of Reciprocal.

Examples

4 25
0.25 0.5 0.2

20§31 0§71 232 4j4
0J71 0J1 0.25J70.25 0.125J70.125

ODIV«1
+0 0.5

Replicate: R«X/[K]Y

Y may be any array. X is a simple integer vector or scalar.

The axis specification is optional. If present, K must be a simple integer scalar or unit
vector. The value of K must be an axis of Y. Ifabsent, the last axis of Y is implied.
The form R<X#Y implies the first axis of Y.

IfY has length 1 along the K (or implied) axis, it is extended along that axis to
match the length of X. Otherwise, the length of X must be the length of the Kth (or
implied) axis of Y. However, if X is a scalar or one-element vector, it will be extended
to the length of the K'h axis.

R is composed from sub-arrays along the Kth axis of Y. If X[I] (an element of X) is
positive, then the corresponding sub-array is replicated X[I] times. If X[I] is zero,
then the corresponding sub-array of Y is excluded. If X[I] is negative, then the fill
element of Y (ce>Y) isreplicated | X[I] times. Each ofthe (replicated) sub-arrays
and fill items are joined along the Kth axis in the order of occurrence. The shape of R
is the shape of Y except that the length of the (implied) Kth axis is +/ | X (after pos-
sible extension).

This function is sometimes called Compress when X is Boolean.

Chapter 4: Primitive Functions

31

Examples

1010 1/15
135

1 72 3 "4 5/15
1003330000556525H5

[
a1 N
w

2 0 1/M

0 1M
0 1/[1IM
L 56

IfY is a singleton (1=x/p,Y) its value is notionally extended to the length of X
along the specified axis.

10 1/4
"

101/,3
33

10 1/1 1p5

312 Dyalog APL/W Programmer's Guide & Language Reference

Reshape:

R«XpY

Y may be any array. X must be a simple scalar or vector of non-negative integers. R
is an array of shape X whose elements are taken from Y in row-major sequence and
repeated cyclically ifrequired. IfY is empty, R is composed of fill elements of Y
(ce>Y). If X contains at least one zero, then R is empty. If X is an empty vector,
then R is scalar.

Examples

2 3p18
123
4L 5 6

2 3pik

F
= N
N W

2 3p10

oo

00
00

Residue:

ReX|Y

Y may be any numeric array. X may be any numeric array.

For positive arguments, R is the remainder when Y is divided by X. If X=0, R is Y. For
other argument values, R is Y=NxX where N is some integer such that R lies between
0 and X, but is not equal to X.

OCT is an implicit argument of Residue.

Examples

3373 73755 44
127172

0.5]3.12 71 70.6
0.12 0 0.4

"1 0 1]75.25 0 2.41
“0.25 0 0.41

152123j3 3j4 5j6
131 ~131 0J1

Note that the ASCII Broken Bar (Qucs 166, U+00A6) is not interpreted as Residue.

Chapter 4: Primitive Functions 313

Reverse:

R«$[K]Y

Y may be any array. The axis specification is optional. If present, K must be an
integer scalar or one-element vector. The value of K must be an axis of Y. Ifabsent,
the last axis is implied. The form R«@Y implies the first axis.

R is the array Y rotated about the Kth or implied axis.

Examples

$1 2 3 4+ 5
54321

M

[
N
w

oM

w
N
—_

oM

—_
N o

$[1IM

Reverse First: R«o[K]Y

The form R«eY implies reversal along the first axis. See "Reverse:" above.

Right:

ReXrY

X and Y may be any arrays. The result R is the right argument Y.

Example

42 +'abc' 1 2 3
abc 1 2 3

Note that when * is applied using reduction, the derived function selects the last
sub-array of the array along the specified dimension. This is implemented as an
idiom.

314 Dyalog APL/W Programmer's Guide & Language Reference

Examples
/1 2 3

mat<«t'scent' 'canoe' 'arson' 'rouse' 'fleet'
~#mat A last row

fleet
+/mat A last column

tenet

+/[2]2 3 4p124 A last row from each plane
9 10 11 12
21 22 23 24

Roll:

Re?2Y

Y may be any positive integer array. R has the same shape as Y at each depth.

For each element of Y, y, the corresponding element of R is an integer, pseudo-ran-
domly selected from the integers 1y with each integer in this population having an
equal chance of being selected.

0I0 and [RL are implicit arguments of Roll. A side effect of Roll is to change the
value of JRL. See "Random Number Generator:" on page 372 and "Random Link: "
on page 583.

Examples

79 9 9
275

Rotate:

R«X$¢[K]Y

Y may be any array. X must be a simple integer array. The axis specification is
optional. Ifpresent, K must be a simple integer scalar or one-element vector.

The value of K must be an axis of Y. If absent, the last axis of Y is implied. The form
R<XeY implies the first axis.

IfY is a scalar, it is treated as a one-element vector. X must have the same shape as
the rank of Y excluding the Kth dimension. If X is a scalar or one-element vector, it
will be extended to conform. If'Y is a vector, then X may be a scalar or a one-clement
vector.

Chapter 4: Primitive Functions 315

R is an array with the same shape as Y, with the elements of each of the vectors along
the Kth axis of Y rotated by the value of the corresponding element of X. Ifthe value
is positive, the rotation is in the sense of right to left. Ifthe value is negative, the rota-
tion is in the sense of left to right.

Examples

3¢ 1
L 56712

24¢1 2345
5123

234567
3

M

1 2 3
7

5 6

L
8

9 10 11 12
13 14 15 16

J$M

12 9 10 11
15 16 13 14

Rotate First: ReXe[K]Y

The form R«<XeY implies rotation along the first axis. See "Rotate:" above.

316 Dyalog APL/W Programmer's Guide & Language Reference

Same: ReaY

Y may be any array.

The result R is the argument Y.

Examples

Shape: RepY

Y may be any array. R is a non-negative integer vector whose elements are the dimen-
sions of Y. If'Y is a scalar, then R is an empty vector. The rank of'Y is given by ppY.

Examples
pl0
p'CAT'
3
p3 Up112
3 4

+G+(2 3p16)('CAT' 'MOUSE' 'FLEA')

1 23 CAT MOUSE FLEA
4 56
pG
2
ppG
1
oG
23 3
07G

Chapter 4: Primitive Functions 317

Split:

R«+[K]Y

Y may be any array. The axis specification is optional. If present, K must be a simple
integer scalar or one-element vector. The value of K must be an axis of Y. Ifabsent,
the last axis is implied.

The items of R are the sub-arrays of Y along the Kth axis. R isascalarifY is a scalar.
Otherwise R is an array whose rank is ~1+ppY and whose shape is (K#1ppY)/pY.
Examples

+3 4p'MINDTHATSTEP'
MIND THAT STEP

42 5p110
12345 6789 10

+[1]12 5p110
16 27 38 49 510

Subtract:

ReX-Y

Y may be any numeric array. X may be any numeric array. R is numeric. The value of
R is the difference between X and Y.

This function is also known as Minus.

Example

37 240-21"7"2%
1 73 6 74

2j3-.3j5 A (a+bi)-(c+di) = (a-c)+(b-d)i
1.7372

318

Dyalog APL/W Programmer's Guide & Language Reference

Table:

Y

Y may be any array. R is a 2-dimensional matrix of the elements of Y taken in row-

major order, preserving the shape of the first dimension of Y if it exists

Table has been implemented according to the Extended APL Standard (/ISO/IEC

13751:2001).

Examples

Jdisplay {w (pw)} 5'a’

€
Jdisplay {w (pw)} s'hello’
r
‘h 51
e
L
L
o
Le
ldisplay {w (pw)} 52 3 4pi24
T
{1 2 3 4 5 6 7 8 9 10 11 12 2 12
13 14 15 16 17 18 19 20 21 22 23 24

Chapter 4: Primitive Functions 319

Take: R«X1tY

Y may be any array. X must be a simple integer scalar or vector.

If'Y is a scalar, it is treated as a one-element array of shape (p,X)p1. The length of
X must be the same as or less than the rank of Y. If the length of X is less than the rank
of Y, the missing elements of X default to the length of the corresponding axis of Y.

R is an array of the same rank as Y (after possible extension), and of shape | X. If X
[I] (an element of X) is positive, then X[I] sub-arrays are taken from the beginning
ofthe Ith axisof Y. If X[I] is negative, then X[I] sub-arrays are taken from the
end of the Ith axis of Y.

If more elements are taken than exist on axis I, the extra positions in R are filled with
the fill element of Y (ce>Y).
Examples

5t'ABCDEF"
ABCDE

5t1 2 3
12300

511 2 3
00123

54(13) (t4) (15)
123 1234 12345 000 0O00O0

M
1234
56 7 8

2 3tM
123
56 7

“1 T24M
78

M3<2 3 up[lA

11M3
ABCD
EFGH
IJKL

~1tM3
MNOP
QRST

UVWX

320 Dyalog APL/W Programmer's Guide & Language Reference

Take with Axes: Re«Xt[K]Y

Y may be any non scalar array. X must be a simple integer scalar or vector. K is a vec-
tor of zero or more axes of Y.

R is an array of the first or last elements of Y taken along the axes K depending on
whether the corresponding element of X is positive or negative respectively.

The rank of R is the same as the rank of Y:
ppR <> ppY
The size of each axis of R is determined by the corresponding element of X:

(PR)[,K] <> |,X

Examples

OeMe2 3 4pr24

2 3 4

5 6 7 8
0 11 12

13 14 15 16

17 18 19 20
21 22 23 24

2¢[2IM
3 4
5 6 7 8

[
N

13 14 15 16
17 18 19 20

2¢[3IM

O U1 =
o

13 14
17 18

2 T24[3 2IM

17 18
21 22

Chapter 4: Primitive Functions 321

ReXxY

See "Multiply:" on page 298.

Transpose (Monadic): R«QY

Y may be any array. R is an array of shape ¢pY, similar to Y with the order of the
axes reversed.

Examples
M

a1 N

3
6

£~

&M

WN +—~
o~ O F

Transpose (Dyadic): R«XQY

Y may be any array. X must be a simple scalar or vector whose elements are included
in the set 1ppY. Integer values in X may be repeated but all integers in the set 1[/X
must be included. The length of X must equal the rank of Y.

R is an array formed by the transposition of the axes of Y as specified by X. The Ith
element of X gives the new position for the Ith axis of Y. If X repositions two or
more axes of Y to the same axis, the elements used to fill this axis are those whose
indices on the relevant axes of Y are equal.

0I0 is an implicit argument of Dyadic Transpose.

Examples

A
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

17 18 19 20
21 22 23 24

322 Dyalog APL/W Programmer's Guide & Language Reference

2 1 3%A
1 2 3 4
13 14 15 16

5 6 7 8
17 18 19 20

9 10 11 12
21 22 23 24

1 1 18A
1 1 2%A

1 2 3 4
17 18 19 20

Type: (OML<1) R«eY

Migration level must be such that [JML <1 (otherwise € means Enlist. See "Enlist:" on
page 256).

Y may be any array. R is an array with the same shape and structure as Y in which a
numeric value is replaced by 0 and a character value is replaced by '

Examples
€(2 3p16) (1 U4p'TEXT")

000
000

Chapter 4: Primitive Functions 323

Union: R«XvY
Y must be a vector. X must be a vector. Ifeither argument is a scalar, it is treated as a
one-element vector. R is a vector of the elements of X catenated with the elements of
Y which are not found in X.

Items in X and Y are considered the same if X=Y returns 1 for those items.
OCT is an implicit argument of Union.
Examples
‘WASH' u 'SHOUT'
WASHOUT
'ONE' 'TWO' uv 'TWO' 'THREE'
ONE TWO THREE
For performance information, see "Search Functions and Hash Tables" on page 109.
Unique: RevY

Y must be a vector. R is a vector of the elements of Y omitting non-unique elements
after the first.

0CT is an implicit argument of Unique.

Examples

u 'CAT' 'DOG' 'CAT' 'MOUSE' 'DOG' 'FOX'
CAT DOG MOUSE FOX

v 22 10 22 22 21 10 5 10
22 10 21 5

Without:

ReX~Y

See "Excluding:" on page 258.

Zilde:

R«8

The empty vector (1 0) may be represented by the numeric constant & called ZILDE.

324 Dyalog APL/W Programmer's Guide & Language Reference

325

Chapter 5:

Primitive Operators

Operator Syntax

Operators take one or two operands. An operator with one operand is monadic. The
operand of a monadic operator is to the left of the operator. An operator with two
operands is dyadic. Both operands are required for a dyadic operator.

Operators have long scope to the left. That is, the left operand is the longest function
or array expression to its left (see "Operators" on page 21). A dyadic operator has
short scope on the right. Right scope may be extended by the use of parentheses.

An operand may be an array, a primitive function, a system function, a defined func-
tion or a derived function. An array may be the result of an array expression.

An operator with its operand(s) forms a DERIVED FUNCTION. The derived func-
tion may be monadic or dyadic and it may or may not return an explicit result.

Examples

+/15
15

(x02)13
149

PLUS « + o TIMES « x
1 PLUS.TIMES 2

2
ONL 2
A
X
OEX4ONL 2

ONL 2

326

Dyalog APL/W Programmer's Guide & Language Reference

Axis Specification

Some operators may include an axis specification. Axis is itself an operator. How-
ever the effect of axis is described for each operator where its specification is per-
mitted. [JI0 is an implicit argument of the function derived from the Axis operator.

The description for each operator follows in alphabetical sequence. The valence of
the derived function is specifically identified to the right of the heading block.

Table 8: Primitive Operators

Class of Name Producing Monadic |Producing Dyadic
Operator derived function derived function
Assignment Xf<Y
Assignment X[I]f<«Y
Assignment (EXP X)f<Y
Commute Xf=Y
Each £y Xy
Monadic I-Beam ATY
Reduction f/Yy [1]
fAY []
Scan F\Y [1]
fxy []
Spawn f&y Xf&Y
Axis f[B1Y Xf[BlY
Composition fogY XfogY
AeogyY
(foB)Y
Dyadic
Inner Product Xf.gY
Outer Product Xo.gY
Power fxgY Xf¥gY
Variant fElgY XfElgY
[JIndicates optional axis specification

Chapter 5: Primitive Operators 327

Operators (A-Z)

Monadic and Dyadic primitive operators are presented in alphabetical order of their
descriptive names as shown in Table 8 above.

The valence of the operator and the derived function are implied by the syntax in the
heading block.

Assignment (Modified): {R}<Xf<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array
whose items are appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the value of the array named by X to the

result of XfY.
Examples
A
12345
A+<10
A
11 12 13 14 15
OeAx<2
2
A

22 24 26 28 30

vec+< L4+9?9 ¢ vec
351717240 732

vec/=«vec>0 ovec
35142

328 Dyalog APL/W Programmer's Guide & Language Reference

Assignment (Indexed Modified): {R}«X[I]f«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
I must be a valid index specification. The items of the indexed portion of X must be
appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the indexed elements of X, thatis X[1],
to the result of X[I]fY. This result must have the same shape as X[I].

Examples

A
12345

+A[2 4]+«1
1

A
13355

A[3]+<«2

A
1 31.5565

If an index is repeated, function fwill be applied to the successive values of the
indexed elements of X, taking the index occurrences in left-to-right order.

Example
B«<5p0

B[2 41 21 4 2 4 1 3]+«1

B

Chapter 5: Primitive Operators 329

Assignment (Selective Modified): {R}<«(EXP X) f<«Y

f may be any dyadic function which returns an explicit result. Y may be any array
whose items are appropriate to function f. X must be the name of an existing array.
EXP is an expression that selects elements of X. (See "Assignment (Selective):" on
page 234 for a list of allowed selection functions.) The selected elements of X must
be appropriate to function f.

R is the “pass-through” value, that is, the value of Y. Ifthe result of the derived func-
tion is not assigned or used, there is no explicit result.

The effect of the derived function is to reset the selected elements of X to the result of
X[I1fY where X[I] defines the elements of X selected by EXP.

Example

A
12 36 23 78 30

((A>30)/A) x« 100
A
12 3600 23 7800 30

Axis (with Monadic Operand): R«f[B]Y

f must be a monadic primitive mixed function taken from those shown in Table 9
below, or a function derived from the operators Reduction (/) or Scan (\). B must be
a numeric scalar or vector. Y may be any array whose items are appropriate to func-
tion f. Axis does not follow the normal syntax of an operator.

Table 9: Primitive monadic mixed functions with optional axis.

Function |Name Range of B

¢ or e Reverse |BeippY

U Mix (0#1]8)~(B>0I0-1)~(B<[I0+ppY)
4 Split BeippY

s Ravel fraction, or zero or more axes of Y

c Enclose (B=10)v(~/BerppY)

In most cases, B must be an integer which identifies a specific axis of Y. However,
when f is the Mix function (1), B is a fractional value whose lower and upper
integer bounds select an adjacent pair of axes of Y or an extreme axis of Y.

330 Dyalog APL/W Programmer's Guide & Language Reference

For Ravel (,) and Enclose (<), B can be a vector of two or more axes.

0I0 is an implicit argument of the derived function which determines the meaning

of B.
Examples
$[1]2 3pr6
b 5 6
12 3
t[.1]1'ONE"' 'TWO'
oT
NW
EO

Axis (with Dyadic Operand): R«Xf[B]Y

f must be a dyadic primitive scalar function, or a dyadic primitive mixed function
taken from Table 10 below. B must be a numeric scalar or vector. X and Y may be any
arrays whose items are appropriate to function f. Axis does not follow the normal
syntax of an operator.

Table 10: Primitive dyadic mixed functions with optional axis.

Function | Name Range of B

/ or # [Replicate BeippY

\ or X |Expand BeippY

e

¢ or e |Rotate BeippY

, or 5 |Catenate BeippY

, or 3 |Laminate (0#118)" (B>0I0-1)* (B <010+ (ppX)
[ppY)

) Take zero or more axes of Y

¥ Drop zero or more axes of Y

In most cases, B must be an integer value identifying the axis of X and Y along which
function f is to be applied.

Chapter 5: Primitive Operators 331

Exceptionally, B must be a fractional value for the Laminate function (,) whose
upper and lower integer bounds identify a pair of axes or an extreme axis of X and Y.
For Take (1) and Drop (V) , B can be a vector of two or more axes.

0I0 is an implicit argument of the derived function which determines the meaning
of B.

Examples
1 45 =[1] 3 2p16
10
01
10
2 72 1/[2]2 3p'ABCDEF'
AA
DD F
"ABC',[1.1]'="
A=
B=
C=
"ABC',[0.1]'="'
ABC
010<0
'ABC',[70.5]'="

n >
no

B

Axis with Scalar Dyadic Functions

The axis operator [X] can take a scalar dyadic function as operand. This has the
effect of “stretching’ a lower rank array to fit a higher rank one. The arguments must
be conformable along the specified axis (or axes) with elements of the lower rank
array being replicated along the other axes.

For example, if H is the higher rank array, L the lower rank one, X is an axis spec-
ification, and f a scalar dyadic function, then the expressions Hf [XJL and LF[X]H
are conformable if (pL)<= (pH) [X]. Each element of L is replicated along the
remaining (pH)~X axes of H.

In the special case where both arguments have the same rank, the right one will play
the role of the higher rank array. If R is the right argument, L the left argument, X is an
axis specification and f a scalar dyadic function, then the expression L f [X]R is con-
formable if (pL)<>(pR)[X].

332 Dyalog APL/W Programmer's Guide & Language Reference

Examples

mat
10 20 30
40 50 60

mat+[1]1 2 A add along first axis
11 21 31
42 52 62

mat+[2]1 2 3 A add along last axis
11 22 33
41 52 63

cube
100 200 300
400 500 600

700 800 900
1000 1100 1200

cube+[1]1 2
101 201 301
401 501 601

702 802 902
1002 1102 1202

cube+[3]1 2 3
101 202 303
401 502 603

701 802 903
1001 1102 1203

cube+[2 3]mat
110 220 330
440 550 660

710 820 930
1040 1150 1260

cube+[1 3]mat
110 220 330
410 520 630

740 850 960
1040 1150 1260

Chapter 5: Primitive Operators 333

Commute: {R}<«{X}f=Y

f may be any dyadic function. X and Y may be any arrays whose items are appro-
priate to function f.

The derived function is equivalent to Y f X. The derived function need not return a
result.

Ifleft argument X is omitted, the right argument Y is duplicated in its place, i.e.

FIY > Y FEY

Examples

N
3254613

N/=2|N
3513

p~3
333

mean<+/o(+ep~) A mean of a vector
mean 110
5.5

The following statements are equivalent:
F/=<«I
FeF/~I
F<I/F

Commute often eliminates the need for parentheses

334 Dyalog APL/W Programmer's Guide & Language Reference

Composition (Form I): {R}«fogyY

f may be any monadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. The items of
gY must be appropriate to function f.

The derived function is equivalent to fgY. The derived function need not return a
result.

Composition allows functions to be glued together to build up more complex func-

tions.
Examples

RANK <« peop

RANK 'JOANNE' (2 3pi6)
1 2

+/0172 4 6
3 10 21

OVR'SUM'

V R«<SUM X
[1] R«+/X

v

SUMe1™2 4 6

3 10 21

Chapter 5: Primitive Operators 335

Composition (Form Il): {R}+«AogY

g may be any dyadic function. A may be any array whose items are appropriate to
function g. Y may be any array whose items are appropriate to function g.

The derived function is equivalent to AgY. The derived function need not return a
result.

Examples

2 20p 7 'AB'
AA BB
AA BB

SINE « 10

SINE 10 20 30
“0.5440211109 0.9129452507 ~0.9880316241

The following example uses Composition Forms I and II to list functions in the work-
space:

ONL 3
ADD
PLUS

Oo«oOVR™ONL 3

vV ADD X
[1] +LABp~0#[NC'SUM' ¢ SUM<«0
[2] LAB:SUM«SUM++/X

v

V R<A PLUS B
[1] R<A+B

v

336 Dyalog APL/W Programmer's Guide & Language Reference

Composition (Form lll): {R}«(foB)Y

f may be any dyadic function. B may be any array whose items are appropriate to
function f. Y may be any array whose items are appropriate to function f.

The derived function is equivalent to YfB. The derived function need not return a
result.

Examples

(x20.5)4 16 25
2 45

SQRT « xo.5

SQRT 4 16 25
2 45

The parentheses are required in order to distinguish between the operand B and the
argument Y.

Composition (Form IV): {R}«XfogY

f may be any dyadic function. g may be any monadic function which returns a
result. Y may be any array whose items are appropriate to function g. Also gY must
return a result whose items are appropriate as the right argument of function f. X
may be any array whose items are appropriate to function f.

The derived function is equivalent to XfgY. The derived function need not return a
result.

Examples

+o+/4L0p1 A Golden Ratio! (Bob Smith)
1.618033989

0,015
o1 012 0123 01234 012345

Chapter 5: Primitive Operators 337

Each (with Monadic Operand): {R}«f"Y

f may be any monadic function. Y may be any array, each of whose items are sep-
arately appropriate to function f.

The derived function applies function f separately to each item of Y. The derived
function need not return a result. Ifa result is returned, R has the same shape as Y,
and its elements are the items produced by the application of function f to the cor-
responding items of Y.

If'Y is empty, the prototype of R is determined by applying the operand function
once to the prototype of Y.

Examples
G<('TOM' (13))('DICK"' (i4))('HARRY' (15))
pG
3
oG
2 2 2
076

3 3 b4 5 5

+0FX"('FOO1"' 'A«1')('FO02' 'A<«2')
FOO1 FOO2

338 Dyalog APL/W Programmer's Guide & Language Reference

Each (with Dyadic Operand): {R}«XFf"Y

f may be any dyadic function. X and Y may be any arrays whose corresponding
items (after scalar extension) are appropriate to function f when applied separately.

The derived function is applied separately to each pair of corresponding elements of
Xand Y. If X orY is a scalar or single-element array, it will be extended to conform
with the other argument. The derived function need not produce an explicit result.
If a result is returned, R has the same shape as Y (after possible scalar extension)
whose elements are the items produced by the application of the derived function to
the corresponding items of X and Y.

If X or Y is empty, the operand function is applied once between the first items of X
and Y to determine the prototype of R.

Examples

+G<(1 (2 3))(4 (5 6))(8 9)10
1 23 4 56 8 9 10
167G
23 1 56 4 98 10

1 32 4 65 8 9 10

1 23 Y 56 8 9 10

1 2 3 417G
1 4 56 890 10000

"ABC','XYZ'
AX BY CZ

Chapter 5: Primitive Operators 339

Inner Product: R«Xf.gY

f must be a dyadic function. g may be any dyadic function which returns a result.
The last axis of X must have the same length as the first axis of Y.

The result of the derived function has shape (T14pX) ,1+pY. Each item of R is the
result of f /xg”'y where x and y are typical vectors taken from all the combinations
of vectors along the last axis of X and the first axis of Y respectively.

Function f (and the derived function) need not return a result in the exceptional case
when 2="11pX. In all other cases, function f must return a result.

Ifthe result of xg ™"y is empty, for any x and y,a DOMAIN ERROR will be reported
unless function f is a primitive scalar dyadic function with an identity element
shown in "Identity Elements" on page 343.

Examples

1 2 3+.x10 12 14
76

1 2 3 PLUS.TIMES 10 12 14
76

+/1 2 3x10 12 14
76

NAMES
HENRY
WILLIAM
JAMES
SEBASTIAN

NAMESA.='WILLIAM '
0100

340 Dyalog APL/W Programmer's Guide & Language Reference

Outer Product: {R}<«Xo.gY

g may be any dyadic function. The left operand of the operator is the symbol o. X
and Y may be any arrays whose elements are appropriate to the function g.

Function g is applied to all combinations of the elements of X and Y. If function g
returns a result, the shape of Ris (pX) ,pY. Each element of R is the item returned
by function g when applied to the particular combination of elements of X and Y.

Examples

1 2 30.x10 20 30 40
10 20 30 40
20 40 60 80
30 60 90 120

1 2 30.p'AB'
A B
AA BB
AAA BBB

°.,1 23
3
3

N = =

2
2
2

N -
N =

(13)0.=13

(o Ne N
oo
~ OO

If X or Y is empty, the result R is a conformable empty array, and the operand function
is applied once between the first items of X and Y to determine the prototype of R.

Chapter 5: Primitive Operators 341

Power Operator: {R}«{X}(fxg)Y

Ifright operand g is a numeric integer scalar, power applies its left operand function
f cumulatively g times to its argument. In particular, g may be Boolean 0 or 1 for
conditional function application.

Ifright operand g is a scalar-returning-returning dyadic function, then left operand
function f is applied repeatedly until ((f Y) g Y) oruntil a strong interrupt
occurs. In particular, if g is = or =, the result is sometimes termed a fixpoint of f.

Ifa left argument X is present, it is bound as left argument to left operand function f:
X (f ¥ g) Y > (Xeof ¥ g) Y

A negative right operand g applies the inverse of the operand function f, (| g)
times. In this case, f may be a primitive function or an expression of primitive func-
tions combined with primitive operators:

o compose
each

o, outer product

= commute

\ scan

[] axis

® power

Defined, dynamic and some primitive functions do not have an inverse. In this case, a
negative argument g generates DOMAIN ERROR.

Examples

(,0co,%(1==,vec))vec A ravel-enclose if simple.
ab cel 0 1{(c*¥a)w} 'abc A enclose first and last.
cap«{(aaxa)w} A conditional application.

ab c+«l 0 lccap abc A enclose first and last.

Dyalog APL/W Programmer's Guide & Language Reference

succ«lo+

(succ*4)10
14

(succ*~3)10
7

1+o+%=1

1.618033989

f«<(320+)0(x01.8)

f 0 100
32 212

cfx"1

c 32 212
0 100

invs«{(aa*"1)w}

+\invs 1 3 6 10
123 4

201invs 9
1001

dual«{ww*~1 oo ww w}
mean<{(+/w)+pw}

mean duale 1 2 3 4 5
2.605171085

+/dual+ 1 2 3 4 5
0.4379562044

mean dual(x=)1 2 3 4 5
3.31662479

®dualt 'hello' 'world'
hw eo Lr Ll od

Warning

successor function.
fourth successor of 10.
third predecessor of 10.

fixpoint: golden mean.

Fahrenheit from Celsius.

c is Inverse of f.
Celsius from Fahrenheit.

inverse operator.

scan inverse.

decode inverse.

dual operator.
mean function.

geometric mean.

parallel resistance.

root-mean-square.

vector transpose.

Some expressions, such as the following, will cause an infinite internal loop and
APL will appear to hang. In most cases this can be resolved by issuing a hard INTER-

RUPT.

Chapter 5: Primitive Operators 343

Reduce:

R«f/[K]Y

f must be a dyadic function. Y may be any array whose items in the sub-arrays along
the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. Ifabsent,
the last axis of Y is implied. The form R<f #Y implies the first axis of Y.

R is an array formed by applying function f between items of the vectors along the
Kth (or implied) axis of Y.

Table 11: Identity Elements

Function Identity
Add + 0
Subtract - 0
Multiply x 1
Divide + 1
Residue | 0
Minimum L M(1)
Maximum [-M(1)
Power * 1
Binomial ! 1

And A 1

Or v 0

Less < 0

Less or Equal < 1
Equal = 1
Greater > 0
Greater or Equal > 1

Not Equal # 0

344

Dyalog APL/W Programmer's Guide & Language Reference

Encode T 0

Union v s}

Replicate /# 1

Expand \X 1

Rotate de 0
Notes:

1. M represents the largest representable value: typically this is 1.7E308, unless
OFR is 1287, when the value is 1E6145.

For a typical vector Y, the result is:
c(12Y)f(22Y)f...... f(naY)

The shape of R is the shape of Y excluding the Kth axis. IfY isascalarthenR isa
scalar. Ifthe length ofthe Kth axis is 1, then R is the same as Y. Ifthe length of the
Kth axis is 0, then DOMAIN ERROR is reported unless function f occurs in Table 1,
in which case its identity element is returned in each element of the result.

Examples
v/0 01 0010

MAT

123

4L 56

+/MAT
6 15

+#MAT
579

+/[1IMAT
579

+/(1 2 3)(4+ 5 6)(7 89)
12 15 18

,/'ONE' 'NESS'
ONENESS

+/10

Chapter 5: Primitive Operators 345

,/u '
DOMAIN ERROR
’/I '
A

346 Dyalog APL/W Programmer's Guide & Language Reference

Reduce First: Ref+Y

The form R« f #Y implies reduction along the first axis of Y. See "Reduce:" above.

Reduce N-Wise: ReXf/[K]Y

f must be a dyadic function. X must be a simple scalar or one-item integer array. Y
may be any array whose sub-arrays along the Kth axis are appropriate to function f.

The axis specification is optional. If present, K must identify an axis of Y. If absent,
the last axis of Y is implied. The form R«Xf #Y implies the first axis of Y.

R is an array formed by applying function f between items of sub-vectors of length X
taken from vectors along the Kth (or implied) axis of Y.

X can be thought of as the width of a ‘window’ which moves along vectors drawn
from the Kth axis of Y.

If X is zero, the resultisa (pY)+(ppY)=1ppY array of identity elements for the
function f. See "Identity Elements" on page 343.

If X is negative, each sub-vector is reversed before being reduced.

Examples

il
123 4

3+/14n (1+2+3) (2+3+4)
6 9

2+/14A (1+2) (2+3) (3+4)
357

1+/1t4n (1) (2) (3) (4)
123 4

0+/14a Identity element for +
000O00O0

0x/14a Identity element for x
11111

2,/1t4%a (1,2) (2,3) (3,4)
12 23 34

“2,/14m (2,1) (3,2) (4,3)
21 32 43

Chapter 5: Primitive Operators 347

Scan:

R«f\[K]Y

f may be any dyadic function that returns a result. Y may be any array whose items
in the sub-arrays along the Kth axis are appropriate to the function f.

The axis specification is optional. If present, K must identify an axis of Y. Ifabsent,
the last axis of Y is implied. The form R«fXY implies the first axis of Y.

R is an array formed by successive reductions along the Kth axis of Y. IfV is a typical
vector taken from the Kth axis of Y, then the Ith element of the result is determined
as f/ItV.

The shape of R is the same as the shape of Y. IfY is an empty array, then R is the
same empty array.
Examples

vN\0 01 0010
001111

“N\N1110111
1110000

+\1 2 3 4 5
13 6 10 15

+\(1 2 3)(4 5 6)(7 8 9)
123 579 12 15 18

348 Dyalog APL/W Programmer's Guide & Language Reference

[
~N N
w

+\[11M

-
~N N
w

,\"ABC'
A AB ABC

T<'ONE(TWO) BOOK(S)'

#\Te' ()
0001111 000000110

((Te'()")v=\Te'()")/T
ONE BOOK

Scan First: RefXY

The form R«<fXY implies scan along the first axis of Y. See "Scan:" above.

Chapter 5: Primitive Operators 349

Spawn:

{R}«{X}f&Y

& is a monadic operator with an ambivalent derived function. & spawns a new thread
in which f is applied to its argument Y (monadic case) or between its arguments X
and Y (dyadic case). The shy result of this application is the number of the newly

created thread.

When function f terminates, its result (if any), the thread result, is returned. If the
thread number is the subject of an active JTSYNC, the thread result appears as the
result of JTSYNC. Ifno dTSYNC is in effect, the thread result is displayed in the ses-

sion in the normal fashion.

Note that & can be used in conjunction with the each operator * to launch many

threads in parallel.

Examples
+8&L4

0.25
O«+84

1

0.25
FO0&88
2 FOO&3
{NIL}&O
¢& 'NIL'
X.G00&99
¢&'0dL 2'
"NS'¢&'FOO'

A

A

PRT&4nl 9 n

Reciprocal in background

Show thread number

Spawn monadic function.
dyadic

niladic

thread in remote space.
Execute async expression.
remote

PRT spaces in parallel.

350 Dyalog APL/W Programmer's Guide & Language Reference

Variant:

{R}«{X}(f [B)Y

The Variant operator [l specifies the value of an option to be used by its left operand
function f. An option is a named property of a function whose value in some way
affects the operation of that function.

For example, the Search and Replace operators include options named IC and
Modewhich respectively determine whether or not case is ignored and in what
manner the input document is processed.

One of'the set of options may be designated as the Principal option whose value
may be set using a short-cut form of syntax as described below. For example, the Prin-
cipal option for the Search and Replace operators is IC.

[l and JOPT are synonymous though only the latter is available in the Classic Edi-
tion.

Currently, the Variant operator is used solely to specify options for the S and R
operators but it is anticipated that its use will become more widespread in later ver-
sions.

For the operand function with right argument Y and optional left argument X, the
right operand B specifies the values of one or more options that are applicable to that
function. B may be a scalar, a 2-element vector, or a vector of 2-element vectors
which specifies values for one or more options as follows:

e If B is a 2-element vector and the first element is a character vector, it spec-
ifies an option name in the first element and the option value (which may
be any suitable array) in the second element.

e If B is a vector of 2-element vectors, each item of B is interpreted as above.

e If B is a scalar (a rank-0 array of any depth), it specifies the value of the Prin-
cipal option,

Option names and their values must be appropriate for the left operand function,
otherwise an OPTION ERROR (error code 13) will be reported.

Chapter 5: Primitive Operators 351

The following illustrations and examples apply to functions derived from the Search
and Replace operators.

Examples of operand B

The following expression sets the IC option to 1, the Mode optionto 'D' and the
EOL optionto 'LF".

E('Mode' 'D')('IC' 1)('EOL' 'LF')
The following expression sets just the EOL propertyto 'CR'.
E'eoL' 'CR'

The following expression sets just the Principal option
(which for the Search and Replace operators is IC) to 1.

B 1

The order in which options are specified is typically irrelevant but if the same option
is specified more than once, the rightmost one dominates. The following expression
sets the option ICto 1:

B('IC' 0) ('IC' 1)

The Variant operator generates a derived function f[IB and may be assigned to a
name. The derived function is effectively function f bound with the option values
specified by B.

The derived function may itself be used as a left operand to Variant to produce a sec-
ond derived function whose options are further modified by the second application
of'the operator. The following sets the same options as the first example above:

('Mode' 'D'E'IC' 1EI'EOL' 'LF'

When the same option is specified more than once in this way, the outermost (right-
most) one dominates. The following expression also sets the option IC to 1:

E'IC' Oofl'IC' 1

352 Dyalog APL/W Programmer's Guide & Language Reference

Further Examples

The following derived function returns the location of the word 'variant ' within
its right argument using default values for all the options.

f1 « 'variant' 0OS O
f1 'The variant Variant operator'
N

It may be modified to perform a case-insensitive search:

(fL [1) 'The variant Variant operator'
b 12

This modified function may be named:

f2a « f1 [1
f2 'The variant Variant operator'

4 12
The modified function may itself be modified, in this case to revert to a case sensitive
search:
f3 « f2 0
f3 'The variant Variant operator'
4

This is equivalent to:

(f1 @ 1 [0) '"The variant Variant operator'

Chapter 5: Primitive Operators 353

I-Beam:

R«{X}(AT)Y

[-Beam is a monadic operator that provides a range of system related services.

WARNING: Although documentation is provided for I-Beam functions, any service
provided using I-Beam should be considered as “experimental” and subject to
change — without notice - from one release to the next. Any use of [-Beams in appli-
cations should therefore be carefully isolated in cover-functions that can be adjusted
ifnecessary.

A is an integer that specifies the type of operation to be performed as shown in the
table below. Y is an array that supplies further information about what is to be done.

X is currently unused.

R is the result of the derived function.

A Derived Function

200 Syntax Colouring

685 Core to APLCore

1111 Number of Threads

1112 Parallel Execution Threshold
1113 Thread Synchronisation Mechanism
2000 Memory Manager Statistics

2010 Update DataTable

2011 Read DataTable

2100 Export to Memory

3002 Component Checksum Validation
4000 Fork New Task

4001 Change User

4002 Reap Forked Tasks

4007 Signal Counts

16807 Random Number Generator

354 Dyalog APL/W Programmer's Guide & Language Reference

Syntax Colouring: R«2001Y

This function obtains syntax colouring information for a function.

Y is a vector of character vectors containing the [JNR representation of a function or
operator.

R is a vector of integer vectors with the same shape and structure of Y in which each
number identifies the syntax colour element associated with the corresponding char-
acterin Y.

{(tw),t 2001w} 'foo; local' 'global'’
"local«pp''hello'""’

foo; local 21 21 21 19 3 31 31 31313100000
global 7. 7 7 7 7 7 0 0 0 00O00O00O0
local«pp'hello’ 31 31 31 31 31 19 23 23 4 4 4 4 4 4 4

In this example:

1)

21 is the syntax identifier for “function name’
19 is the syntax identifier for “primitive”

3 is the syntax identifier for “white space”
31 is the syntax identifier for “local name”

7 1is the syntax identifier for “global name”

23 is the syntax identifier for “idiom”

Chapter 5: Primitive Operators 355

Core to APLCore: (UNIX only) X (6851)Y

This function is used to extract a workspace from a core file and convert it to an
aplcore file. It may then be possible to recover objects from the aplcore file. For
further assistance in this matter, please contact support@dyalog.com.

X and Y are character vectors that specify the names of the core fileand aplcore
file respectively.

Core files differ between AIX and Linux, thus the APL used must be for the same
Unix.

A 64-bit APL can be used to extract a 32 bit core file but a 32-bit APL cannot be
used to extract a 64-bit core file. The process maps the core file into memory so a
low value of MAXWS may be appropriate ifa 32-bit APL is being used; mapped
files use a separate area of the process's address space from that occupied by the
workspace.

This function relies on certain markers being present in the workspace, and will oper-
ate only on core files generated by Version 12.1 or higher dated after 4 July 2011.

356 Dyalog APL/W Programmer's Guide & Language Reference

Number of Threads: R«11111IY

Specifies how many threads are to be used for parallel execution.

Y is an integer that specifies the number of threads that are to be used henceforth for
parallel execution. Prior to this call, the default number of threads is specified by an
environment variable named APL. MAX THREADS. If this variable is not set, the
default is the number of CPUs that the machine is configured to have.

R is the previous value

Note that (unless APL MAX THREADS is set), the number of CPUs for which the
machine is configured is returned by the first execution of 1111I. The following
expression obtains and resets the number of threads back to this value.

{}11111 ncpu«iiiizl

Parallel Execution Threshold: R«11121Y

Y is an integer that specifies the array size threshold at which parallel execution takes
place. If a parallel-enabled function is invoked on an array whose number of ele-
ments is equal to or greater than this threshold, execution takes place in parallel. If
not, it doesn’t.

Prior to this call, the default value of the threshold is specified by an environment var-
iable named APL. MIN PARALLEL. Ifthis variable is not set, the default is 32768.

R is the previous value

Chapter 5: Primitive Operators 357

Memory Manager Statistics: R«{X}(2000z1)Y

This function returns information about the state of the workspace and provides a
means to reset certain statistics and to control workspace allocation. This I-Beam is
provided for performance tuning and is VERY LIKELY to change in the next
release.

Y is a simple integer scalar or vector containing values listed in the table below.

If X is omitted, the result R is an array with the same structure as Y, but with values in
Y replaced by the following statistics. For any value in Y outside those listed below,
the result is undefined.

Value |Description

0 Workspace available (a "quick" [JWA)

1 Workspace used

2 Number of compactions since the workspace was loaded
3 Number of garbage collections that found garbage

4 Current number of garbage pockets in the workspace

12 Sediment size

Current workspace allocation, i.e. the amount of memory that is
actually being used

Workspace allocation high-water mark, i.e. the maximum amount
14 of memory that has been used since the workspace was loaded or
since this count was reset

15 Limit on minimum workspace allocation

16 Limit on maximum workspace allocation

Note that while all other operations are relatively fast, the operation to count the
number of garbage pockets (4) may take a noticeable amount of time, depending
upon the size and state of the workspace.

Examples

200010
55414796
20000 1 2 3 4 12 13 14 15 16
55414796 10121204 5 0 0 2120524 34489168 34489168 0 65536000

358 Dyalog APL/W Programmer's Guide & Language Reference

If X is specified,it must be either a simple integer scalar, or a vector of the same length
as Y, and the result R is €. In this case, the value in Y specifies the item to be set and
and X its new value according to the table below.

Value |Description

2 0 resets the compaction count; no other values allowed

3 0 resets the count of garbage collections that found garbage; no
other values allowed

14 0 resets the workspace allocation high-water mark; no other values
allowed

Is Sets the minimum workspace allocation to the corresponding value

in X; must be between 0 and the current workspace allocation

Sets the maximum workspace allocation to the corresponding value
16 in X; 0 implies MAXWS otherwise must be between the current
workspace allocation and MAXWS.

Notes:

e Note that the workspace allocation high-water mark indicates a minimum
value for MAXWS.

e Limitting the maximum workspace allocation can be used to prevent code
which grabs as much workspace as it can from skewing the peak usage
result.

e Limitting the minimum workspace allocation can avoid repeatedly com-
mitting and releasing memory to the Operating System when memory usage
is fluctuating.

Examples

2000z2 3
6 0 33216252
0 (20001)2 3 14 A Reset compaction count
2000z2 3
30000000 4+0000000(2000x)15 16 A Restrict min/max ws

(20001)15 16
30000000 40000000

0 (20001)15 16 A Reset min/max ws

(20001)15 16
0 65536000

Chapter 5: Primitive Operators

359

(20001)13 14 A Current, peak WS allocation
4072532 4072532

a«10ebp'x' A Increase WS allocation

(20001)13 14 A Current, peak WS allocation
15108580 15108580

OJex 'a' ¢ {}Owa A Decrease current WS allocation

(20001)13 14 A Current, peak WS allocation
1962856 15108580

0 (2000x) 14 m Reset High-water mark

(20001)13 14 @ Current, peak WS allocation
1962856 1962856

360 Dyalog APL/W Programmer's Guide & Language Reference

Update DataTable: R«{X}2010z1Y

This function performs a block update of an instance of the ADO.NET object Sys-
tem.Data.DataTable. This object may only be updated using an explicit row-wise
loop, which is slow at the APL level. 201 0T implements an internal row-wise loop
which is much faster on large arrays. Furthermore, the function handles NULL values
and the conversion of internal APL data to the appropriate .Net datatype in a more
efficient manner than can be otherwise achieved. These 3 factors together mean that
the function provides a significant improvement in performance compared to calling
the row-wise programming interface directly at the APL level.

Y isa 2,3 or4-item array containing dtRef,Data,Nul lValues and Rows as
described in the table below.

The optional argument X is the Boolean vector ParseF Lags as described in the

table below.
Argument Description
dtRef A reference to an instance of System.Data.DataTable.
Data A matrix with the same number of columns as the table.

An optional vector with one element per column, containing
Nul LValues | the value which should be mapped to DBNull when this
column is written to the DataTable.

Row indices (zero origin) of the rows to be updated. If not

Rows provided, data will be appended to the DataTable.

A Boolean vector, where a 1 indicates that the corresponding
ParseF lags | element of Data is a string which needs to be passed to the
Parse method of the data type of column in question.

Chapter 5: Primitive Operators 361

Example

Shown firstly for comparison is the type of code that is required to update a DataT-
able by looping:

(QUSING«'System' 'System.Data,system.data.dll’

dt<[INEW DataTable

ac«{dt.Columns.Add o w}

'S1' 'S2' 'I1' 'D1' ac”String String Int32 DateTime
S1 S2 1I1 D1

NextYear<DateTime.Now+{[ONEW TimeSpan (4tw)} tn«365
data<(s"in),(np'odd' 'even'),(10|in),s;NextYear
2 Ltdata

364+ even 4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

ar<{(row«dt.NewRow).ItemArray«w ¢ dt.Rows.Add row}
t«<3>50ai ¢ ar’idata ¢ (3=0ai)-t
449

This result shows that this code can only insert roughly 100 rows per second (3°[0AI
returns elapsed time in milliseconds), because of the need to loop on each row and
perform a noticeable amount of work each time around the loop.

20101 does all the looping in compiled code:

dt.Rows.Clear A Delete the rows inserted above
SetDT«2010z
t«3o[JAI ¢ SetDT dt data o (3=[JAI)-t4

So in this case, using 201 0T achieves something like 10,000 rows per second.

Using ParseFlags

Sometimes it is more convenient to handle .Net datatypes in the workspace as strings
rather than as the appropriate APL array equivalent. The System.DateTime datatype
(which by default is represented in the workspace as a 6-element numeric vector) is
one such example. 201 0T will accept such character data and convert it to the appro-
priate .Net datatype internally.

If specified, the optional left argument X (ParseF Lags) instructs the system to
pass the corresponding columns of Data to the Parse() method of the data type in
question prior to performing the update.

362 Dyalog APL/W Programmer's Guide & Language Reference

NextYear<«s 'DateTime.Now+{[INEW TimeSpan (4tw)}
“1n<«365

data<(s"in),(np'odd' 'even'),(10]|in),NextYear
2 4tdata

364+ even L4 18-01-2011 14:03:29

365 odd 5 19-01-2011 14:03:29

SetDT«20101 0 0 01 SetDT dt data

Handling Nulls

Ifapplicable, Nul LValues is a vector with as many elements as the DataTable has
columns, indicating the value that should be converted to System.DBNul L as data
is written. For example, using the same DataTable as above:

t
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

dt.Rows.Clear a Clear the contents of dt
SetDT dt t ('<null>' 'even' 99 '')

Above, we have declares that the string ' <nul L>" should be considered to be a

null value in the first column, 'even' in the second column, and the integer 99 in
the third.

Updating Selected Rows

Sometimes, you may have read a very large number of rows from a DataTable, but
only want to update a single row, or a very small number of rows. Row indices can
be provided as the fourth element of the argument to 2010I. If you are not using
Nul LValues,you can just use an empty vector as a placeholder. Continuing from
the example above, we could replace the first row in our DataTable using:

SetDT«20101
SetDT dt (1 4p'one' 'odd' 1 DateTime.Now) € O

Note

o the values must be provided as a matrix, even if you only want to update a
single row,
e row indices are zero origin (the first row has number 0).

Warning

If you are experimenting with writing to a DataTable, note that you should call
dt.Rows.Clear each time to clear the current contents of the table. Otherwise you will
end up with a very large number of rows after a while.

Chapter 5: Primitive Operators 363

Read DataTable: R«{X}20111Y

This function performs a block read from an instance of the ADO.NET object Sys-
tem.Data.DataTable. This object may only be read using an explicit row-wise loop,
which is slow at the APL level. 201 1T implements an internal row-wise loop which
is much faster on large arrays. Furthermore, the function handles NULL values and
the conversion of .Net datatypes to the appropriate internal APL form in a more effi-
cient manner than can be otherwise achieved. These 3 factors together mean that the
function provides a significant improvement in performance compared to calling the
row-wise programming interface directly at the APL level.

Y is a scalar or a 2-item array containing dtRef,and Nul LValues as described in
the table below.

The optional argument X is the Boolean vector ParseF Lags as described in the
table below.

The result R is the array Dat a as described in the table below.

Argument Description
dtRef A reference to an instance of System.Data.DataTable.
Data A matrix with the same number of columns as the table.

An optional vector with one element per column, containing
Nul LValues |the value to which a DBNull in the corresponding column of
the DataTable should be mapped in the result array Data.

A Boolean vector, where a 1 indicates that the corresponding
element of Data should be converted to a string using the
ToString () method of the data type of column in
question. It is envisaged that this argument may be extended
in the future, to allow other conversions — for example
converting Dates to a floating-point format.

Parsef lags

364 Dyalog APL/W Programmer's Guide & Language Reference

First for comparison is shown the type of code that is required to read a DataTable by
looping:

t<3o5[JAI ¢ datal<«t([Jdt.Rows).ItemArray o (3>[AI)-t
191

The above expression turns the dt . Rows collection into an array using (], and mixes
the ItemArray properties to produce the result. Although here there is no explicit
loop, involved, there is an implicit loop required to reference each item of the col-
lection in succession. This operation performs at about 200 rows/sec.

20111 does the looping entirely in compiled code and is significantly faster:

GetDT«20111
t«3o50AI ¢ data2«GetDT dt ¢ (320AI)-t
25

ParseFlags Example

In the example shown above, 201 1T created 365 instances of System.DateTime
objects in the workspace. If we are willing to receive the timestamps in the form of
strings, we can read the data almost an order of magnitude faster:

t«3o50AI ¢ data3«0 0 0 1 GetDT dt ¢ (32[AI)-t
3

The left argument to 2011 I allows you to flag columns which should be returned as
the ToString () value of each object in the flagged columns. Although the result-
ing array looks identical to the original, it is not: The fourth column contains char-
acter vectors:

2 4tdata3
364 even 4 18-01-2011 14:03:29
365 odd 5 19-01-2011 14:03:29

Depending on your application, you may need to process the text in the fourth col-
umn in some way — but the overall performance will probably still be very much
better than it would be if DateTime objects were used.

Chapter 5: Primitive Operators 365

Handling Nulls

Using the DataTable produced by the corresponding example shown for 20101 it
can be shown that by default null values will be read back into the APL workspace
as instances of System.DBNull.

GetDT«20111>
J«z<GetDT dt

odd 1 21-01-2010 14:50:19
two 2 22-01-2010 14:50:19
three odd 23-01-2010 14:50:19

(1 18z).GetType
System.DBNull System.DBNull System.DBNull

However, by supplying a Nul LValues argument to 2011 I, we can request that
nulls in each column are mapped to a corresponding value of our choice; in this case,
"<null>', 'even', and 99 respectively.

GetDT dt ('<null>' 'even' 99 '")
<null> odd 1 21-01-2010 14:50:19
two even 2 22-01-2010 14:50:19
three odd 99 23-01-2010 14:50:19

366 Dyalog APL/W Programmer's Guide & Language Reference

Export To Memory: R«21001Y

This function exports the current active workspace as an in-memory .NET.Assembly.

Y may be any array and is ignored.

The result R is 1 if the operation succeeded or 0 if it failed.

Component Checksum Validation: {R}«3002zxY

Checksums allow component files to be validated and repaired using (JF CHK.

From Version 13.1 onwards, components which contain checksums are also val-
idated on every component read.

Although not recommended, applications which favour performance over security
may disable checksum validation by [JFREAD using this function.

Y is an integer defined as follows:

Value

Description

0

OFREAD will not validate checksums.

OFREAD will validate checksums when they are present. This is the
default.

The shy result R is the previous value of this setting.

Chapter 5: Primitive Operators 367

Fork New Task: (UNIX only) R«4000IY

Y must be is a simple empty vector but is ignored.

This function forks the current APL task. This means that it initiates a new separate
copy of the APL program, with exactly the same APL execution stack.

Following the execution of this function, there will be two identical APL processes
running on the machine, each with the same execution stack and set of APL objects
and values. However, none of the external interfaces and resources in the parent proc-
ess will exist in the newly forked child process.

The function will return a result in both processes.

o In the parent process, R is the process id of the child (forked) process.
o In the child process, R is a scalar zero.

The following external interfaces and resources that may be present in the parent
process are not replicated in the child process:

Component file ties

Native file ties

Mapped file associations
Auxiliary Processors

NET objects

Edit windows

Clipboard entries

GUI objects (all children of '. ")
I/O to the current terminal

Note that External Functions established using [ONA are replicated in the child proc-
ess.

The function will fail with a DOMAIN ERROR ifthere is more than one APL thread
running.

The function will fail witha FILE ERROR 11 Resource temporarily
unavailable ifan attempt is made to exceed the maximum number of processes
allowed per user.

368 Dyalog APL/W Programmer's Guide & Language Reference

Change User: (UNIX only) R«4+001I1Y

Yis a character vector that specifies a valid UNIX user name. The function changes
the userid (uid) and groupid (gid) of the process to values that correspond to the spec-
ified user name.

Note that it is only possible to change the user name if the current user name is root
(uid=0).

This call is intended to be made in the child process after a fork (+000I8) ina
process with an effective user id of root. It can however be used in any APL process
with an effective user id of root.

If the operation is successful, R is the user name specified in Y.
If the operation fails, the function generatesa FILE ERROR 1 Not Owner error.

If the argument to 4001 I is other than a non-empty simple character vector, the func-
tion generates a DOMAIN ERROR.

If the argument is not the name of a valid user the function generatesa FILE ERROR
3 No such process.

If the argument is the same name as the current effective user, then the function
returns that name, but has no effect.

If the argument is a valid name other than the name of the effective user id of the cur-
rent process, and that effective user id is not root the function generatesa FILE
ERROR 1 Not owner.

Chapter 5: Primitive Operators 369

Reap Forked Tasks: (UNIX only) R«4002IY

Under UNIX, when a child process terminates, it signals to its parent that it has ter-
minated and waits for the parent to acknowledge that signal. 40021 is the mech-
anism to allow the APL programmer to issue such acknowledgements.

Y must be a simple empty vector but is ignored.

The result R is a matrix containing the list of the newly-terminated processes which
have been terminated as a result of receiving the acknowledgement, along with infor-
mation about each of those processes as described below.

R[;1] isthe process ID (PID) of the terminated child

R[;2] is "1 ifthe child process terminated normally, otherwise it is the signal
number which caused the child process to terminate.

R[;3] is 1 ifthe child process terminated as the result of a signal, otherwise it is
the exit code of the child process

The remaining 15 columns are the contents of the rusage structure returned by the
underlying wait3 () system call. Note that the two timevalstructs are each
returned as a floating point number.

The current rusage structure contains:

struct rusage {
struct timeval ru utime; /* user time used */
struct timeval ru stime; /* system time used */

long ru maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru minflt; /* page reclaims */

long ru majflt; /* page faults */

long ru nswap; /* swaps */

long ru_inblock; /* block input operations */

long ru_oublock; /* block output operations */
long ru _msgsnd; /* messages sent */

long ru_msgrcv; /* messages received */

long ru nsignals; /* signals received */

long ru nvcsw; /* voluntary context switches */

long ru_nivcsw; /* involuntary context switches */

370 Dyalog APL/W Programmer's Guide & Language Reference

40021 may return the PID of an abnormally terminated Auxiliary Processor; APL
code should check that the list of processes that have been reaped is a superset of the
list of processes that have been started.

Example

V tryforks;pid;fpid;rpid
rpids<fpids<8
tFor i :In 15
fpid«4000x'' A fork() a process
A if the child, hang around for a while
:If fpid=0
oL 2xi
{oFF
:Else
p if the parent, save child's pid
+fpids,«fpid
:EndIf
:EndFor

:For i :In 120
0oL 3
A get list of newly terminated child processes
rpid«<4002z"'"’
and if not empty, make note of their pids
:If O#2prpid
+rpids,«rpid[;1]
:EndIf
A if all fork()'d child processes accounted for
:If fpids=fpidsnrpids
:Leave A quit
:EndIf
:EndFor

L B s Y s Y s I s I e I e I s N s N s Y s Y s I s I e N s N s s s s I s N e N s s s N s Nl |
NNNNNNNNRP R R R RERERREEREEREREREOONOOTFWN -
DU F WNEFRPROWOVWONOUUFWNEF O LI

[S S S S S ST S ST S S S S S S S
el

Chapter 5: Primitive Operators 37

Signal Counts: (UNIX only) R«40071Y

Y must be a simple empty vector but is ignored.

The result R is an integer vector of signal counts. The length of the vector is system
dependent. On AIX 32-bit it is 63 on AIX 64-bit it is 256 but code should not rely
on the length.

Each element is a count of the number of signals that have been generated since the
last call to this function, or since the start of the process. R[1] is the number of occur-
rences of signal 1 (SIGHUP), R[2] the number of occurrences of signal 2, and so
forth.

Each time the function is called it zeros the counts; it is therefore inadvisable to call
it in more than one APL thread.

Currently, only SIGHUP, SIGINT, SIGQUIT, SIGTERM and SIGWINCH are
counted and all other corresponding elements of R are 0.

Thread Synchronisation Mechanism: R«11131Y

Y is Boolean and specifies whether or not the main thread does a busy wait for the
others to complete or uses a semaphore when a function is executed in parallel.

The default and recommended value is 0 (use a semaphore). This function is provided
only for Operating Systems that do not support semaphores.

A value of 1 must be set if you are running AIX Version 5.2 which does not support
Posix semaphores. Later versions of AIX do not have this restriction.

R is the previous value

372 Dyalog APL/W Programmer's Guide & Language Reference

Random Number Generator: R«168071IY

Specifies the random number generator that is to be used by Roll and Deal.

Y is an integer that specifies which random number generator is to be enabled and
must be one of the numbers listed in the first column of the table below.

R is an integer that identifies the previous random number generator in use.

The 3 random number generators are as follows :

Id [Algorithm

0 Lehmer linear congruential generator.

1 Mersenne Twister.

2 Operating System random number generator.

Under Windows, the Operating System random number generator uses the
CryptGenRandom () function. Under Unix/Linux it uses /dev/urandom[3].

The default random number generatorin a CLEAR WS is 0 (Lehmer linear con-
gruential). The default will change to 1 (Mersenne Twister) in Dyalog APL Version
14.0. In preparation for this change, avoid writing code which assumes that [JRL will
be a scalar integer. The change to the default will only impact applications if they are
rebuilt froma clear ws. Saved workspaces will continue to use the same generator
as before.

The Lehmer linear congruential generator RNG(0 was the only random number gen-
erator provided in versions of Dyalog APL prior to Version 13.1. The imple-
mentation of this algorithm has several limitations including limited value range
(2%31), short period and non-uniform distribution (some values may appear more
frequently than others). It is retained for backwards compatibility.

The Mersenne Twister algortithm RNG I produces 64-bit values with good dis-
tribution.

The Operating System algorithm RNG2 does not support a user modifiable random
number seed, so when using this scheme, it is not possible to obtain a repeatable ran-
dom number series.

For further information, see "Random Link: " on page 583.

373

Chapter 6:

System Functions & Variables

System Functions, Variables, Constants and Namespaces provide information and
services within the APL environment. Their case-insensitive names begin with [J.

i 0 OA 0A OAI

OAN OARBIN OARBOUT OAT OAv

OAvU OBASE OCLASS OCLEAR OcMD

dcr dcs act dcy 0o

aocT OoF ao1v OoL 0OoM

ODMX aoQ Oor 0eb OEM

OEN Oex OEXCEPTION [OEXPORT |OFAPPEND
OFAVAIL |OFCHK OFCcoPY OFCREATE |OFDROP
OFERASE |OFHIST OFHOLD OFIX OFLIB
OFMT OFNAMES OF NUMS OFprROPS |OFR
OFRDAC OFRDCI OFREAD OFRENAME |OFREPLACE
OFRESIZE |OFSIZE OFSTAC OFSTIE OFTIE
OFUNTIE |OFX OINSTANCES (0OIO0 OKL

aLc OLOAD OLoCK oLx OMAP

OML OMONITOR [[ONA ONAPPEND |ONC
ONCREATE |[ONERASE ONEW ONL ONLOCK
ONNAMES | [ONNUMS OnNQ ONR ONREAD
ONRENAME |ONREPLACE |[ONRESIZE ONS ONSI
ONSIZE ONTIE ONULL ONUNTIE |[ONXLATE

374

Dyalog APL/W Programmer's Guide & Language Reference

OOFF goprT Oor OPATH OPFKEY
app OPROFILE |OPW [OREFS
ORL ORSI ORTL as OSAVE
dso Ose OsH OSHADOW |0OSI
OSIGNAL |OSIZE asM asr OsRC
OSTACK OSTATE gsTop asvce asvo
asvQ OSVR asvs aTc OTCNUMS
OTGET OTHIS aTID OTKILL OTNAME
OTNUMS gdTPooL aTeuT OTRACE OTRAP
OTREQ aTs OTSYNC gucs OUSING
OVFI OvrR OWA awc awe
OWN aws OwsID Owx OXML
OxsSI OxT

Chapter 6: System Functions & Variables 375

System Variables

System variables retain information used by the system in some way, usually as
implicit arguments to functions.

The characteristics of an array assigned to a system variable must be appropriate;
otherwise an error will be reported immediately.

Example

010+3

DOMAIN ERROR
0103
A

System variables may be localised by inclusion in the header line of a defined func-
tion or in the argument list of the system function [SHADOW. When a system variable
is localised, it retains its previous value until it is assigned a new one. This feature is
known as “pass-through localisation”. The exception to this rule is JTRAP.

A system variable can never be undefined. Default values are assigned to all system
variables in a clear workspace.

Name Description Scope

0 Character Input/Output Session

0 Evaluated Input/Output Session
0Avu Atomic Vector — Unicode Namespace
gct Comparison Tolerance Namespace
doct Decimal Comp Tolerance Namespace
gdorv Division Method Namespace
OFRrR Floating-Point Representation Workspace
gro Index Origin Namespace
aLx Latent Expression Workspace
ML Migration Level Namespace
OPATH Search Path Session
gep Print Precision Namespace
apw Print Width Session
OrRL Random Link Namespace

376 Dyalog APL/W Programmer's Guide & Language Reference

ORTL Response Time Limit Namespace
asM Screen Map Workspace
OTRAP Event Trap Workspace
OUSING Microsoft .Net Search Path Namespace
OwsIDb Workspace Identification Workspace
awx Window Expose Namespace

In other words, 0, [1,JSE,JPATH and [JPW relate to the session. JL X, SM, OTRAP
and WS ID relate to the active workspace. All the other system variables relate to
the current namespace.

Session Workspace Namespace

0 OFRrR 0Avu

0 oLx gcT

OPATH 0sM gocT

apw OTRAP go1Iv

OwsIDb 010

OML
aep
ORL
ORTL
OUSING
Owx

System Namespaces

OSE is currently the only system namespace.

Chapter 6: System Functions & Variables 377

System Constants

System constants, which can be regarded as niladic system functions, return infor-

mation from the system. They have distinguished names, beginning with the quad
symbol,[J. A system constant may not be assigned a value. System constants may
not be localised or erased. System constants are summarised in the following table:

Name Description

0OA Underscored Alphabetic upper case characters
0A Alphabetic upper case characters

0AI Account Information

OAN Account Name

OAv Atomic Vector

0o Digits

(oM Diagnostic Message

(domx Extended Diagnostic Message

QdeN Event Number

OEXCEPTION |Reports the most recent Microsoft .Net Exception
gLc Line Count

ONULL Null Item

gso Screen (or window) Dimensions

aTc Terminal Control (backspace, linefeed, newline)
aTs Time Stamp

OwA Workspace Available

378 Dyalog APL/W Programmer's Guide & Language Reference

System Functions

System functions provide various services related to both the APL and the external

environment. System functions have distinguished names beginning with the []
symbol. They are implicitly available in a clear workspace.

The following Figure identifies system functions divided into relevant categories.
Each function is described in alphabetical order in this chapter

System Commands

These functions closely emulate system commands (see "System Commands" on page

665)
Name Description
OCLEAR Clear workspace (WS)
gcy Copy objects into active WS
Oex Expunge objects
OLOAD Load a saved WS
ONL Name List
gdoFF End the session
OSAVE Save the active WS

External Environment

These functions provide access to the external environment, such as file systems,
Operating System facilities, and input/output devices.

Name Description

OARBIN Arbitrary Input

OARBOUT Arbitrary Output

[CMD Execute the Windows Command Processor or another
program

gcmp Start a Windows AP

OMAP Map a file

ONA Declare a DLL function

OSH Execute a UNIX command or another program

dsH Start a UNIX AP

Chapter 6: System Functions & Variables 379

Defined Functions and Operators

These functions provide services related to defined functions and operators.

Name Description

OAT Object Attributes

0cr Canonical Representation
dcs Change Space

0eo Edit one or more objects
OEXPORT Export objects

OF X Fix definition

gLock Lock a function
(OMONITOR Monitor set
OMONITOR Monitor query

ONR Nested Representation
0NS Create Namespace
0or Object Representation
OPATH Search Path
OPROFILE Profile Application
OREFS Local References
(OSHADOW Shadow names
gsTop Set Stop vector
gstop Query Stop vector
OTHIS This Space

OTRACE Set Trace vector
OTRACE Query Trace vector
Ovr Vector Representation

380 Dyalog APL/W Programmer's Guide & Language Reference

Error Trapping
These functions are associated with event trapping and the system variable JTRAP.
Name Description
0eM Event Messages
OSIGNAL Signal event
Shared Variables
These functions provide the means to communicate between APL tasks and with
other applications.
Name Description
gsvc Set access Control
gsvc Query access Control
gsvo Shared Variable Offer
gsvo Query degree of coupling
asvaQ Shared Variable Query
OdSVR Retract offer
gsvs Query Shared Variable State

Object Oriented Programming

These functions provide object oriented programming features.

Name Description
0BASE Base Class
OCLASS Class

goF Display Format
OFIX Fix

OINSTANCES |Instances

ONEW New Instance

(dSRcC Source

OTHIS This

Chapter 6: System Functions & Variables

381

Graphical User Interface

These functions provide access to GUI components.

Name Description

0oQ Await and process events

0nNQ Place an event on the Queue

awc Create GUI object

awG Get GUI object properties

OwWN Query GUI object Names

aws Set GUI object properties

Owx Expose GUI property names
External Variables

These functions are associated with using external variables.

Name Description
OxT Associate External variable
OxT Query External variable

QOFHOLD

External variable Hold

382 Dyalog APL/W Programmer's Guide & Language Reference

Component Files

The functions provide the means to store and retrieve data on APL Component Files.
See User Guide for further details.

Name Description

OFAPPEND Append a component to File
OFAVAIL File system Availability

OF CHK File Check and Repair
dFcorPy Copy a File

OFCREATE Create a File

OFDROP Drop a block of components
OFERASE Erase a File

OFHIST File History

OFHOLD File Hold

gFLIB List File Library

OFNAMES Names of tied Files

OF NUMS Tie Numbers of tied Files
OFPROPS File Properties

OFRDAC Read File Access matrix
OFRDCI Read Component Information
OFREAD Read a component from File
OFRENAME Rename a File

OFREPLACE Replace a component on File
OFRESIZE File Resize

OFSIZE File Size

OFSTAC Set File Access matrix
OFSTIE Share-Tie a File

OFTIE Tie a File exclusively
OFUNTIE Untie Files

Chapter 6: System Functions & Variables 383

Native Files

The functions provide the means to store and retrieve data on native files.

Name Description

ONAPPEND Append to File
[ONCREATE Create a File

ONERASE Erase a File

ONLOCK Lock a region of a file
[ONNAMES Names of tied Files
[ONNUMS Tie Numbers of tied Files
ONREAD Read from File
ONRENAME Rename a File
ONREPLACE Replace data on File
ONRESIZE File Resize

ONSIZE File Size

ONTIE Tie a File exclusively
ONUNTIE Untie Files

ONXLATE Specify Translation Table

384 Dyalog APL/W Programmer's Guide & Language Reference

Threads

These functions are associated with threads created using the Spawn operator (&).
Name Description
OTCNUMS Thread Child Numbers
OTGET Get Tokens
gTIio Current Thread Identity
OTKILL Kill Threads
OTNAME Current Thread Name
OTNUMS Thread Numbers
gTpPoOL Token Pool
gTPuT Put Tokens
OTREQ Token Requests
OTSYNC Wait for Threads to Terminate

Search and Replace

These operators implement Search and Replace functionality utilising the open-
source regular-expression search engine PCRE.

Name Description
Or Replace
as Search

gopT Variant Operator

Chapter 6: System Functions & Variables

385

Miscellaneous

These functions provide various miscellaneous services.

Name Description

0Avu Atomic Vector - Unicode
0oL Delay execution

(bR Data Representation (Monadic)
[H[p] Data Representation (Dyadic)
OFMT Resolve display

OFMT Format array

OKL Key Labels

ONC Name Classification

ONSI Namespace Indicator
OPFKEY Programmable Function Keys
OrSI Space Indicator

0sI State Indicator

Os1ize Size of objects

OsRr Screen Read

(OSTACK Report Stack

(OSTATE Return State of an object
gducs Unicode Convert

OvrI Verify and Fix numeric
OxsI Extended State Indicator

386

Dyalog APL/W Programmer's Guide & Language Reference

Character Input/Output: 0

[11is a variable which communicates between the user's terminal and APL. Its behav-
iour depends on whether it is being assigned or referenced.

When [is assigned with a vector or a scalar, the array is displayed without the nor-
mal ending new-line character. Successive assignments of vectors or scalars to [1
without any intervening input or output cause the arrays to be displayed on the same
output line.

Example

m«'2+2' o m«':' o m«k
2+2=4

Output through [J is independent of the print width in JPW. The way in which lines
exceeding the print width of the terminal are treated is dependent on the char-
acteristics of the terminal. Numeric output is formatted in the same manner as direct
output (see "Display of Arrays" on page 11).

When [is assigned with a higher-order array, the output is displayed in the same
manner as for direct output except that the print width 0PW is ignored.

When [is referenced, terminal input is expected without any specific prompt, and
the response is returned as a character vector.

If the [request was preceded by one or more assignments to [] without any inter-
vening input or output, the last (or only) line of the output characters are returned as
part of the response.

Example

ma t«t 00000

Examples

0«'OPTION : ' o R+l
OPTION : INPUT

R
OPTION : INPUT

pR
14

Chapter 6: System Functions & Variables 387

The output of simple arrays of rank greater than 1 through [] includes a new-line char-
acter at the end of each line. Input through [includes the preceding output through
[1 since the last new-line character. The result from [1, including the prior output, is
limited to 256 characters.

A soft interrupt causes an INPUT INTERRUPT error if entered while [1 is awaiting
input, and execution is then suspended (unless the interrupt is trapped):

R]
(Interrupt)
INPUT INTERRUPT
A time limit is imposed on input through []if[RTL is set to a non-zero value:

ORTL«5 ¢ [1«'PASSWORD ? ' ¢ R+l
PASSWORD ?
TIMEOUT
ORTL«5 ¢ [1«'PASSWORD : ' ¢ R+l
A

The TIMEOUT interrupt is a trappable event.

388 Dyalog APL/W Programmer's Guide & Language Reference

Evaluated Input/Output: 0

[is a variable which communicates between the user’s terminal and APL. Its behav-
iour depends on whether it is being assigned or referenced.

When [is assigned an array, the array is displayed at the terminal in exactly the same
form as is direct output (see "Display of Arrays" on page 11).

Example

O«2+15
3 4567

0«2 4p'WINEMART'
WINE
MART

When [is referenced, a prompt (0 :) is displayed at the terminal, and input is
requested. The response is evaluated and an array is returned if the result is valid. If
an error occurs in the evaluation, the error is reported as normal (unless trapped by a
OTRAP definition) and the prompt () is again displayed for input. An EOF inter-
rupt reports INPUT INTERRUPT and the prompt (¢) is again displayed for input.
A soft interrupt is ignored and a hard interrupt reports INTERRUPT and the prompt
[@:)is redisplayed for input.

Examples
10x[]+2
O:
13
30 40 50
2+
0.
X
VALUE ERROR
X
A
0O:
2+13

567

Chapter 6: System Functions & Variables 389

A system command may be entered. The system command is effected and the prompt
is displayed again (unless the system command changes the environment):

p3.,0
JWSID
WS/MYWORK
O:
)SI
0
0.
)CLEAR
CLEAR WS

Ifthe response to a[]: prompt is an abort statement (=), the execution will be
aborted:

123=0
O:

->

A trap definition on interrupt events set for the system variable JTRAP in the range
1000-1008 has no effect whilst awaiting input in response to a [J: prompt.

Example
OTRAP<«(11 'C' '"''ERROR''')(1000 'C"' '''STOP''")
2+
0:
(Interrupt Signal)
INTERRUPT
0:
'C'+2
ERROR

A time limit set in system variable ORTL has no effect whilst awaiting input in
response to a[]: prompt.

390 Dyalog APL/W Programmer's Guide & Language Reference

Underscored Alphabetic Characters: R«0A

0A is a deprecated feature. Dyalog strongly recommends that you move away from
the use of [JAand of the underscored alphabet itself, as these symbols now constitute
the sole remaining non-standard use of characters in Dyalog applications.

In Versions of Dyalog APL prior to Version 11.0, [JA was a simple character vector,
composed of the letters of the alphabet with underscores. If the Dyalog Alt font was
in use, these symbols displayed as additional National Language characters.

Version 10.1 and Earlier

0A
ABCDEFGHIJKLMNOPQRSTUVWXYZ

For compatibility with previous versions of Dyalog APL, functions that contain ref-
erences to [JA will continue to return characters with the same index in [JAV as before.
However, the display of A is now A, and the old underscored symbols appear as
they did in previous Versions when the Dyalog Alt font was in use.

Current Version

Alphabetic Characters: R«[A

This is a simple character vector, composed of the letters of the alphabet.

Example

OA
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Chapter 6: System Functions & Variables 391

Account Information: R<[AI

This is a simple integer vector, whose four elements are:

OAI[1] user identification.!

OAI[2] compute time for the APL session in milliseconds.

OAI[3] connect time for the APL session in milliseconds.

OAI[4] keying time for the APL session in milliseconds.

Elements beyond 4 are not defined but reserved.

Example

OAI
52 7396 2924216 2814831

lUnder Windows, this is the aplnid (network ID from configuration dialog
box).Under UNIX and LINUX, this is the UID of the account.

Account Name: R<[JAN

This is a simple character vector containing the user (login) name.

Example
OAN
Pete
pOAN

392 Dyalog APL/W Programmer's Guide & Language Reference

Arbitrary Output: {X}OARBOUT Y

This transmits Y to an output device specified by X.

Under Windows, the use of JARBOUT to the screen or to RS232 ports is not sup-
ported.

Y may be a scalar, a simple vector, or a vector of simple scalars or vectors. The items
of'the simple arrays of Y must each be a character or a number in the range 0 to 255.
Numbers are sent to the output device without translation. Characters undergo the
standard [JAV to ASCII translation. IfY is an empty vector, no codes are sent to the
output device.

X defines the output device. If X is omitted, output is sent to standard output
(usually the screen). If X is supplied, it must be a simple numeric scalar or a simple
text vector.

Ifit is a numeric scalar, it must correspond to a Windows device handle or UNIX
stream number.

Ifit is a text vector, it must correspond to a valid device or file name.

Y ou must have permission to write to the chosen device.

Examples
Write ASCII digits ' 123" to UNIX stream 9:
9 [ARBOUT 49 50 51

Write ASCII characters ' ABC' to MYFILE:
'"MYFILE' [JARBOUT 'ABC'

Beep 3 times:
OARBOUT 7 7 7

Prompt for input:

O« 'Prompt: ' o [Oarbout 12 ¢ ans+l

Chapter 6: System Functions & Variables 393

Attributes: R«{X} OAT Y

Y can be a simple character scalar, vector or matrix, or a vector of character vectors
representing the names of 0 or more defined functions or operators. Used dyadically,
this function closely emulates the APL2 implementation. Used monadically, it
returns information that is more appropriate for Dyalog APL.

Y specifies one or more names. If Y specifies a single name as a character scalar, a char-
acter vector, or as a scalar enclosed character vector, the result R is a vector. If Y spec-
ifies one or more names as a character matrix or as a vector of character vectors R is a
matrix with one row pername in Y.

Monadic Use

If X is omitted, R is a 4-element vector or a 4 column matrix with the same number of
rows as names in Y containing the following attribute information:

R[1] orR[;1]: Each item is a 3-element integer vector representing the function
header syntax:

0 if the function has no result
Function result 1 if the function has an explicit result
~1 if the function has a shy result

—_—

0 if the object is a niladic function or not a function
1 if the object is a monadic function

2 if the object is a dyadic function

~2 if the object is an ambivalent function

2 | Function valence

0 if the object is not an operator
3 |Operator valence | 1 if the object is a monadic operator
2 if the object is a dyadic operator

The following values correspond to the syntax shown alongside:

0 0 O vV FOO

1 0 O vV Z<+FOO

1 0 O v {Z}«F0OO

072 0 v {A} FOO B

1 1 2 v {Z}«(F OP G)B

R[2] orR[;2]: Each itemis the (TS form) timestamp of the time the function was
last fixed.

394 Dyalog APL/W Programmer's Guide & Language Reference

R[3] orR[;3]: Each item is an integer reporting the current JLOCK state of the

function:
0 Not locked
1 Cannot display function
2 Cannot suspend function
3 Cannot display or suspend

R[4%] orR[;4]: Each item is a character vector - the network ID of the user who last
fixed (edited) the function.

Example

v {z}«{Ll}(fn myop)r
[1]

vV z<«foo

[1]

v z«{larg}util rarg
[1]

0LOCK ' foo'

util2<«util

Jdisplay OAT 'myop' 'foo' 'util' 'util2'
J >————— = >——

| |71 72 1] 11996 8 2 2 13 56 0] 0 |john]|

| ~—————— e _————

| vmmmm. e o
| 1 1 1 1
__________________ -
| >————— e — >———
. . .

-
o
o
=
o
o
o
o
o
oo
w

| 11 72 0] 1996 3 1 14 12 10 0| O |pete]|

1 1
~—_————— g —_—

| 11 72 0] 11998 8 26 16 16 42 0| O |graeme]| |

Chapter 6: System Functions & Variables 395

Dyadic Use

The dyadic form of JAT emulates APL2. It returns the same rank and shape result
containing information that matches the APL2 implementation as closely as pos-
sible.

The number of elements or columns in R and their meaning depends upon the value
of X which may be 1,2, 3 or4.

If X is 1, R specifies valences and contains 3 elements (or columns) whose meaning is
as follows:

1 if the object has an explicit result or is a variable
0 otherwise

[u—

Explicit result

0 if the object is a niladic function or not a function
2 |Function valence |1 if the object is a monadic function
2 if the object is an ambivalent function

0 if the object is not an operator
3 |Operator valence |1 if the object is a monadic operator
2 if the object is a dyadic operator

If X is 2, R specifies fix times (the time the object was last updated) for functions and
operators named in Y. The time is reported as 7 integer elements (or columns) whose
meaning is as follows. The fix time reported for names in Y which are not defined
functions or operators is 0.

1 Year

Month

Day

Minute

Second

2
3
4 |Hour
5
6
7

Milliseconds (this is always reported as 0)

396 Dyalog APL/W Programmer's Guide & Language Reference

If X is 3, R specifies execution properties and contains 4 elements (or columns)
whose meaning is as follows:

0 if the object is displayable

I |Displayable 1 if the object is not displayable

0 if execution will suspend in the object

2 1
Suspendable 1 if execution will not suspend in the object

3 Weak Interrupt 0 if the object responds to interrupt
behaviour 1 if the object ignores interrupt
4 (always 0)

If X is 4, R specifies object size and contains 2 elements (or columns) which both
report the JSIZE of the object.

Chapter 6: System Functions & Variables 397

Atomic Vector: R<[JAYV

OAV is a deprecated feature and is replaced by JUCS.

This is a simple character vector of all 256 characters in the Classic Dyalog APL char-
acter.

In the Classic Edition the contents of [JAV are defined by the Output Translate Table.

In the Unicode Edition, the contents of [JAV are defined by the system variable
OAvu.

Examples

OAv[48+110]
0123456789

5 52p12+[av
%' o abcdefgh1Jklmnopqrstuvwxyz __.80123456789_xn¥$£
AABCDEFGHIJKLMNOPQRSTUVWXYZ ¥y OAAAAQEEEIIIIBOOOOUU
Yp3i505{€}-[ARRA= ENOQUBaaaaaageeee111n[/f\\<<->>¢v
-+ix?2ep~ 1&10*[LV°(CDnU1TI,,VAVAQ¢G®E'$2V-—¢000¢"# &'

@UUGAG [T e 10+«>n)]JONSON*% ' ow_abcdefghi jk

> C>~9~

Atomic Vector - Unicode: OAVU

[AVU specifies the contents of the atomic vector, [JAV, and is used to translate data
between Unicode and non-Unicode character formats when required, for example
when:

e Unicode Edition loads or copies a Classic Edition workspace or a work-
space saved by a Version prior to Version 12.0.

o Unicode Edition reads character data from a non-Unicode component file,
or receives data type 82 from a TCP socket.

e Unicode Edition writes data to a non-Unicode component file

¢ Unicode Edition reads or writes data from or to a Native File using con-
version code 82.

e Classic Edition loads or copies a Unicode Edition workspace

e Classic Edition reads character data from a Unicode component file, or
receives data type 80, 160, or 320 from a TCP socket.

e Classic Edition writes data to a Unicode component file.

[AVU is an integer vector with 256 elements, containing the Unicode code points
which define the characters in [JAV.

398 Dyalog APL/W Programmer's Guide & Language Reference

Note

In Versions of Dyalog prior to Version 12.0 and in the Classic Edition, a character is
stored internally as an index into the atomic vector, JAV. When a character is dis-
played or printed, the index in [JAV is translated to a number in the range 0-255
which represents the index of the character in an Extended ASCII font. This mapping
is done by the Output Translate Table which is user-configurable. Note that although
ASCII fonts typically all contain the same symbols in the range 0-127, there are a
number of different Extended ASCII font layouts, including proprietary APL fonts,
which provide different symbols in positions 128-255. The actual symbol that
appears on the screen or on the printed page is therefore a function of the Output
Translate Table and the font in use. Classic Edition provides two different fonts (and
thus two different [JAV layouts) for use with the Development Environment, named
Dyalog Std (with APL underscores) and Dyalog Alt (without APL underscores

The default value of JAVU corresponds to the use of the Dyalog Alt Output Trans-
late Table and font in the Classic Edition or in earlier versions of Dyalog APL.

2 13p0AVU[97+126]
193 194 195 199 200 202 203 204 205 206 207 208 210
211 212 213 217 218 219 221 254 227 236 240 242 245
... pucs 2 13p[0AVU[97+126]
ARAGEEEITTTPO
ooouuu 00
[JAVU has namespace scope and can be localised, in order to make it straightforward
to write access functions which receive or read data from systems with varying
atomic vectors. If you have been using Dyalog Alt for most things but have some
older code which uses underscores, you can bring this code together in the same
workspace and have it all look “as it should” by using the Alt and Std definitions for
[JAVU as you copy each part of the code into the same Unicode Edition workspace.

)JCOPY avu.dws Std.[JAVU
C:\Program Files\Dyalog\Dyalog APL 12.0 Unicode\ws\avu
saved Thu Dec 06 11:24:32 2007

2 13p0AVU[97+126]
9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408

9409 9410
9411 9412 9413 O4iL 9415 9416 9417 9418 9419 9420 9421
9422 9423
Oucs 2 13p0AVU[97+126]
ABCDEFGHIJKLM

NOPQRSTUVWXYZ

Chapter 6: System Functions & Variables 399

Rules for Conversion on Import

When the Unicode Edition imports APL objects from a non-Unicode source, func-
tion comments and character data of type 82 are converted to Unicode. When the
Classic Edition imports APL objects from a Unicode source, this translation is per-
formed in reverse.

If the objects are imported from a Version 12.0 (or later) workspace (i.e. from a work-
space that contains its own value of JAVU) the value of # .[JAVU (the value of JAVU
in the root) in the source workspace is used. Otherwise, such as when APL objects
are imported from a pre-Version 12 workspace, from a component file, or from a TCP
socket, the local value of JAVU in the target workspace is used.

Rules for Conversion on Export

When the Unicode Edition exports APL objects to a non-Unicode destination, such
as a non-Unicode Component File or non-Unicode TCPSocket Object, function com-
ments (in JORs) and character data of type 82 are converted to [JAV indices using the
local value of JAVU.

When the Classic Edition exports APL objects to a Unicode destination, such as a
Unicode Component File or Unicode TCPSocket Object, function comments (in
[JORs) and character data of type 82 are converted to Unicode using the local value
of JAVU.

In all cases, if a character to be translated is not defined in [JAVU,a TRANSLATION
ERROR (event number 92) will be signalled.

400 Dyalog APL/W Programmer's Guide & Language Reference

Base Class: R«[JBASE.Y

0BASE is used to access the base class implementation of the name specified by Y.

Y must be the name of a Public member (Method, Field or Property) that is provided
by the Base Class of the current Class or Instance.

OBASE is typically used to call a method in the Base Class which has been super-
seded by a Method in the current Class.

Note that [IBASE . Y is special syntax and any direct reference to [JBASE on its own
or in any other context, is meaningless and causes SYNTAX ERROR.

In the following example, Class DomesticParrot derives from Class Parrot
and supersedes its Speak method. DomesticParrot.Speak callsthe Speak
method in its Base Class Parrot, via[JBASE.

:Class Parrot: Bird
V R<«Speak
:Access Public
R<'Squark!"’
\'4
:EndClass A Parrot

:Class DomesticParrot: Parrot
V R<«Speak
:Access Public
R<[OBASE.Speak,' Who''s a pretty boy, then!'
\'
:EndClass A DomesticParrot

Maccaw<[INEW Parrot
Maccaw.Speak
Squark!

Pol ly<[ONEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!

Chapter 6: System Functions & Variables 401

Class:

R«{X}OCLASS Y

Monadic Case

Monadic JCLASS returns a list of references to Classes and Interfaces that specifies
the class hierarchy for the Class or Instance specified by Y.

Y must be a reference to a Class or to an Instance of a Class.

R is a vector or vectors whose items represent nodes in the Class hierarchy of Y. Each
item of R is a vector whose first item is a Class reference and whose subsequent items
(if any) are references to the Interfaces supported by that Class.

Example 1

This example illustrates a simple inheritance tree or Class hierarchy. There are 3
Classes, namely:

Animal
Bird (derived from Animal)
Parrot (derived from Bird)

:Class Animal
:EndClass A Animal
:Class Bird: Animal
:EndClass A Bird
:Class Parrot: Bird

tEndClass A Parrot

[OCLASS Eeyore<[INEW Animal
#.Animal

[OCLASS Robin<[INEW Bird
#.Bird #.Animal

OCLASS Polly<[INEW Parrot
#.Parrot #.Bird #.Animal

[(OCLASS™ Parrot Animal
#.Parrot #.Bird #.Animal #.Animal

402 Dyalog APL/W Programmer's Guide & Language Reference

Example 2

The Penguin Class example (see "Penguin Class Example" on page 184) illustrates
the use of Interfaces.

In this case, the Penguin Class derives from Animal (as above) but additionally
supports the BirdBehaviour and FishBehaviour Interfaces, thereby inher-
iting members from both.

Pingo<«[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

Dyadic Case

If X is specified, Y must be a reference to an Instance of a Class and X is a reference to
an Interface that is supported by Instance Y or to a Class upon which Instance Y is
based.

In this case, R is a reference to the implementation of Interface X by Instance Y, or to
the implementation of (Base) Class X by Instance Y, and is used as a cas? in order to
access members of Y that correspond to members of Interface of (Base) Class X.

Example 1:

Once again, the Penguin Class example (see "Penguin Class Example" on page 184)
is used to illustrate the use of Interfaces.

Pingo<+[INEW Penguin
OCLASS Pingo
#.Penguin #.FishBehaviour #.BirdBehaviour #.Animal

(FishBehaviour [JCLASS Pingo).Swim
I can dive and swim like a fish

(BirdBehaviour [JCLASS Pingo).Fly
Although I am a bird, I cannot fly

(BirdBehaviour [OCLASS Pingo).Lay
I lay one egg every year

(BirdBehaviour [OCLASS Pingo).Sing
Croak, Croak!

Chapter 6: System Functions & Variables 403

Example 2:

This example illustrates the use of dyadic JCLASS to cast an Instance to a lower
Class and thereby access a member in the lower Class that has been superseded by
another Class higher in the tree.

Pol Ly<[INEW DomesticParrot
Polly.Speak
Squark! Who's a pretty boy, then!

Note that the Speak method invoked above is the Speak method defined by Class
DomesticParrot, which supersedes the Speak methods of sub-classes Parrot
and Bird.

You may use a cast to access the (superseded) Speak method in the sub-classes
ParrotandBird.

(Parrot [CLASS Polly).Speak
Squark!

(Bird [OCLASS Polly).Speak
Tweet, tweet!

Clear Workspace: OCLEAR

A clear workspace is activated, having the name CLEAR WS. The active workspace
islost. All system variables assume their default values. The maximum size of work-
space is available.

The contents of the session namespace [JSE are not affected.

Example

OCLEAR
OwWSID
CLEAR WS

404

Dyalog APL/W Programmer's Guide & Language Reference

Execute Windows Command; R«[CMD Y

OCMD executes a Windows Command Processor or UNIX shell or starts another Win-
dows application program. [JCMD is a synonym of [JSH. Either system function may
be used in either environment (Windows or UNIX) with exactly the same effect.
0JCMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and [JSH under Windows. See "Execute (UNIX) Command: " on
page 588 for a discussion of the behaviour of these system functions under UNIX.

The system commands) CMD and) SH provide similar facilities but may only be
executed from the APL Session.

Executing a Windows Command

If'Y is a simple character vector, JCMD invokes the Windows Command Processor
(normally cmd . exe)and passes Y to it for execution. R is a vector of character vec-
tors containing the result of the command. Each element in R corresponds to a line
of output produced by the command.

Example
Z<[JCMD'DIR"
pZ

8
tZ

Volume in drive C has no label
Directory of C:\DYALOG

<DIR> 5-07-89 3.02p
.. <DIR> 5-07-89 3.02p
SALES DWS 110092 5-07-89 3.29p
EXPENSES DWS 154207 5-07-89 3.29p

If the command specified in Y already contains the redirection symbol (>) the capture
of output through a pipe is avoided and the result R is empty. Ifthe command spec-
ified by Y issues prompts and expects user input, it is ESSENTIAL to explicitly redi-
rect input and output to the console. Ifthis is done, APL detects the presence of a
">" in the command line, runs the command processor in a visible window, and does
not direct output to the pipe. Ifyou fail to do this your system will appear to hang
because there is no mechanism for you to receive or respond to the prompt.

Chapter 6: System Functions & Variables 405

Example

(OCMD 'DATE <CON >CON'
(Command Prompt window appears)
Current date is Wed 19-07-1995
Enter new date (dd-mm-yy): 20-07-95

(COMMAND PROMPT window disappears)

Implementation Notes

The right argument of [JCMD is simply passed to the appropriate command processor
for execution and its output is received using an unnamed pipe.

By default, JCMD will execute the string ('cmd.exe /c',Y); whereY is the argu-
ment given to JCMD. However, the implementation permits the use of alternative
command processors as follows.

Before execution, the argument is prefixed and postfixed with strings defined by the
APL parameters CMD PREFIX and CMD_ POSTFIX. The former specifies the name
of your command processor and any parameters that it requires. The latter specifies a
string which may be required. If CMD_PREFIX is not defined, it defaults to the
name defined by the environment variable COMSPEC followed by "/c". If COM-
SPEC is not defined, it defaults to cmd . exe. IfCMD_POSTFIX is not defined, it
defaults to an empty vector.

[JCMD treats certain characters as having special meaning as follows:

| marks the start of a trailing comment,

;s | divides the command into sub-commands,

if found within the last sub-command, causes [JCMD to use a visible
window.

If you simply wish to open a Command Prompt window, you may execute the com-
mand as a Windows Program (see below). For example:

(OCMD 'cmd.exe' '’

406 Dyalog APL/W Programmer's Guide & Language Reference

Executing a Windows Program

IfY is a 2-element vector of character vectors, JCMD starts the executable program
named by Y[1] with the initial window parameter specified by Y[2]. The shy
result is an integer scalar containing the window handle allocated by the window
manager.

Y [1] must specify the name or complete pathname of an executable program. Ifthe
name alone is specified, Windows will search the following directories:

the current directory,

the Windows directory,

the Windows system directory,

the directories specified by the PATH variable,
the list of directories mapped in a network.

SR W=

Note that Y[1] may contain the complete command line, including any suitable
parameters for starting the program. If Windows fails to find the executable program,
OCMD will fail and report FILE ERROR 2.

Y[2] specifies the window parameter and may be one of the following. Ifnot, a
DOMAIN ERROR isreported.

‘Normal' Application is started in a normal window, which is given
" the input focus

Application is started in a normal window, which is NOT

‘Unfocused’' | . .
given the input focus

'Hidden' Application is run in an invisible window

'Minimized' | Application is started as an icon which is NOT given the
'‘Minimised' |input focus

'Maximized' | Application is started maximized (full screen) and is given
'Maximised' |the input focus

An application started by JCMD may ONLY be terminated by itself or by the user.
There is no way to close it from APL. Furthermore, ifthe window parameter is HID-
DEN, the user is unaware of the application (unless it makes itself visible) and has no
means to close it.

Examples

Path«'c:\Program Files\Microsoft Office\Office\'
O<0cMD (Path, 'excel.exe') "'

33
(OcCMD (Path, 'winword /mMyMacro') 'Minimized'’

Chapter 6: System Functions & Variables 407

Start Windows Auxiliary Processor: X OCMD Y

Used dyadically, [JCMD starts an Auxiliary Processor. The effect, as far as the APL
workspace is concerned, is identical under both Windows and UNIX, although the
method of implementation differs. [JCMD is a synonym of [JSH. Either function may
be used in either environment (Windows or UNIX) with exactly the same effect.
[JCMD is probably more natural for the Windows user. This section describes the
behaviour of JCMD and [JSH under Windows. See "Start UNIX Auxiliary Processor:
" on page 589 for a discussion of the behaviour of these system functions under
UNIX.

X must be a simple character vector containing the name (or pathname) of a Dyalog
APL Auxiliary Processor (AP). See User Guide for details of how to write an AP.

Y may be a simple character scalar or vector, or a vector of character vectors. Under
Windows the contents of Y are ignored.

[0CMD loads the Auxiliary Processor into memory. Ifno other APs are currently run-
ning, JCMD also allocates an area of memory for communication between APL and
its APs.

The effect of starting an AP is that one or more external functions are defined in the
workspace. These appear as locked functions and may be used in exactly the same
way as regular defined functions.

When an external function is used in an expression, the argument(s) (if any) are
passed to the AP for processing via the communications area described above. APL
halts whilst the AP is processing, and waits for a result. Under Windows, unlike
under UNIX, it is not possible for external functions to run in parallel with APL.

408 Dyalog APL/W Programmer's Guide & Language Reference

Canonical Representation: R«OCR Y

Y must be a simple character scalar or vector which represents the name of a defined
function or operator.

IfY is a name of a defined function or operator, R is a simple character matrix. The
first row of R is the function or operator header. Subsequent rows are lines of the
function or operator. R contains no unnecessary blanks, except for leading inden-
tation of control structures, trailing blanks that pad each row, and the blanks in
comments. IfY is the name of a variable, a locked function or operator, an external
function, or is undefined, R is an empty matrix whose shape is 0 O.

Example

VR<MEAN X A Arithmetic mean
[1] Re(+/X)+pX
[2] v

+F<[JCR"'MEAN'
R«MEAN X A Arithmetic mean
Re(+/X)+pX

pF
2 30

The definition of [JCR has been extended to names assigned to functions by spec-
ification («), and to local names of functions used as operands to defined operators.

IfY is a name assigned to a primitive function, R is a one-element vector containing
the corresponding function symbol. IfY is a name assigned to a system function, R is
a one element nested array containing the name of the system function.

Examples

PLUS«+
+F<[JCR'PLUS"

pF

C+[JCR

c'c'
OcR

pC'C'

Chapter 6: System Functions & Variables 409

VR<CONDITION (FN1 ELSE FN2) X
[1] -~CONDITION/L1
[2] R<FN2 X ¢ =0
[3] L1:R<FN1 X
(4] v

2 [OSTOP 'ELSE'
(X20) | ELSE [X«<72.5

ELSE[2]
X
2.5
OCR'FN2'
[
~{LC
2

IfY is a name assigned to a derived function, R is a vector whose elements represent
the arrays, functions, and operators from which Y was constructed. Constituent func-
tions are represented by their own [JCRs, so in this respect the definition of [JCR is
recursive. Primitive operators are treated like primitive functions, and are rep-
resented by their corresponding symbols. Arrays are represented by themselves.

Example
BOX<«2 20p
+F<[JCR'BOX"
2 2 op
pF
3
Jdisplay F

IfY is a name assigned to a defined function, R is the JCR of the defined function. In
particular, the name that appears in the function header is the name of the original
defined function, not the assigned name Y.

Example

AVERAGE<MEAN
OCR'AVERAGE'
R«<MEAN X A Arithmetic mean
Re(+/X)+pX

410 Dyalog APL/W Programmer's Guide & Language Reference

Change Space: {R}«{X}0OCS Y

Y must be namespace reference (ref) or a simple character scalar or vector identifying
the name of a namespace.

If specified, X is a simple character scalar, vector, matrix or a nested vector of char-
acter vectors identifying zero or more workspace objects to be exported into the
namespace Y.

The identifiers in X and Y may be simple names or compound names separated by
'. " and including the names of the special namespaces '00SE "', '#',and '##'.

The result R is the full name (starting # .) of the space in which the function or oper-
ator was executing prior to the [JCS.

[0CS changes the space in which the current function or operator is running to the
namespace Y and returns the original space, in which the function was previously run-
ning, as a shy result. After the [JCS, references to global names (with the exception
of'those specified in X) are taken to be references to global names in Y. References to
local names (i.e. those local to the current function or operator) are, with the excep-
tion of those with name class 9, unaffected. Local names with name class 9 are how-
ever no longer visible.

When the function or operator terminates, the calling function resumes execution in
its original space.

The names listed in X are temporarily exported to the namespace Y. If objects with
the same name exist in Y, these objects are effectively shadowed and are inaccessible.
Note that Dyadic JCS may be used only ifthere is a traditional function in the state
indicator (stack). Otherwise there would be no way to retract the export. In this case
(for example in a clear workspace) DOMAIN ERROR is reported.

Note that calling [JCS with an empty argument Y obtains the namespace in which a
function is currently executing.

Example

This simple example illustrates how [JCS may be used to avoid typing long path-
names when building a tree of GUI objects. Note that the objects NEW and OPEN are
created as children of the FILE menu as a result of using [JCS to change into the

F .MB.FILE namespace.

Chapter 6: System Functions & Variables 411

v MAKE_FORM;F ;0OLD

[1] '"F'OWC'Form'

[2] '"F.MB'OWC'MenuBar'

[3] '"F.MB.FILE'[JWC'Menu' '&File'
(4]

[5] OLD<[JCS'F.MB.FILE'

[6] "NEW'[(OWC 'MenuItem' '&New'
[7] 'OPEN'[OWC'Menultem' '&Open’
[8] (Jcs oLD

[9]

Elo% '"F.MB.EDIT'(OWC'Menu' '&Edit'
11

[12] OLD<[JCS'F.MB.EDIT'

[13] '"UNDO'[OWC'MenuItem' '&Undo'
[14] 'REDO'OWC'MenuItem' '&Redo'
[15] cs oLD

[16] v

\4

Example

Suppose a form F 1 contains buttons B1 and B2. Each button maintains a count of the
number of times it has been pressed, and the form maintains a count of the total
number of button presses. The single callback function PRESS and its subfunction
FMT can reside in the form itself

#.F1

)CS F1

A Note that both instances reference
A the same callback function
'B1'OWS'Event' 'Select' 'PRESS'
'B2'OWS'Event' 'Select' 'PRESS'

A Initialise total and instance counts.
TOTAL « B1.COUNT « B2.COUNT « O

PRESS MSG

"FMT' 'TOTAL 'JCS=MSG n Switch to instance space
(TOTAL COUNT)++«1 A Incr total & instance count
OWS'Caption' (COUNT FMT TOTAL)m Set instance caption

CAPT«INST FMT TOTL A Format button caption.
CAPT«(3INST),'/',sTOTL n E.g. 40/100.

412 Dyalog APL/W Programmer's Guide & Language Reference

Example

This example uses [JCS to explore a namespace tree and display the structure. Note
that it must export its own name (tree) each time it changes space, because the name
tree is global.

V tabs tree space;subs A Display namespace tree
[1] tabs,space
[2] "tree'[ICS space
[3] >(psubs<{[INL 9)40
(4] (tabs,'. '"JYotree subs
v
)Jns x.y
#.x.y
)ns z
#.z
""tree '#'
#
X
. Y
z
Comparison Tolerance: OdcT

The value of [JCT determines the precision with which two numbers are judged to be
equal. Two numbers, X and Y, are judged to be equal if:

(IX-Y)<OCTx(IX)T|Y where < isapplied without tolerance.

0CT may be assigned any value in the range from 0 to 16*~8. A value of 0 ensures
exact comparison. The value in a clear workspace is 1E~ 14,

OCT is an implicit argument of the monadic primitive functions Ceiling (['), Floor (L)
and Unique (v), and of the dyadic functions Equal (=), Excluding (~), Find (¢),
Greater (>), Greater or Equal (2), Index of (1), Intersection (n), Less (<), Less or Equal
(=), Match (=), Membership (€), Not Match (#), Not Equal (#), Residue (|) and
Union (v), as well as JFMT O-format.

Examples

OCT<«1E~10
1.00000000001 1.0000001 = 1
10

Chapter 6: System Functions & Variables 413

Copy Workspace: {x}0cy Yy

Y must be a simple character scalar or vector identifying a saved workspace. X is
optional. Ifpresent, it must be a simple character scalar, vector or matrix. A scalar or
vector is treated as a single row matrix. Each (implied) row of X is interpreted as an
APL name.

Each (implied) row of X is taken to be the name of an active object in the workspace
identified by Y. If X is omitted, the names of all defined active objects in that work-
space are implied (defined functions and operators, variables, labels and names-
paces).

Each object named in X (or implied) is copied from the workspace identified by Y to
become the active object referenced by that name in the active workspace if the
object can be copied. A copied label is re-defined to be a variable of numeric type.
Ifthe name of the copied object has an active referent in the active workspace, the
name is disassociated from its value and the copied object becomes the active ref-
erent to that name. In particular, a function in the state indicator which is dis-
associated may be executed whilst it remains in the state indicator, but it ceases to
exist for other purposes, such as editing.

You may copy an object from a namespace by specifying its full pathname. The
object will be copied to the current namespace in the active workspace, losing its
original parent and gaining a new one in the process. You may only copy a GUI
object into a namespace that is a suitable parent for that object. For example, you
could only copy a Group object from a saved workspace if the current namespace in
the active workspace is itself a Form, SubForm or Group.

See "Copy Workspace: " on page 670 for further information and, in particular, the
manner in which dependant objects are copied.

A DOMAIN ERROR isreported in any of the following cases:

e Y is ill-formed, or is not the name of a workspace with access authorised for
the active user account.

e Any name in X is ill-formed.

e An object named in X does not exist as an active object in workspace
named in Y.

An object being copied has the same name as an active label.

When copying data between Classic and Unicode Editions, JCY will fail and a
TRANSLATION ERROR will be reported if any object in workspace Y fails con-
version between Unicode and [JAV indices, whether or not that object is specified by
X. See "Atomic Vector - Unicode: " on page 397 for further details.

414 Dyalog APL/W Programmer's Guide & Language Reference

A WS FULL isreported if the active workspace becomes full during the copying

process.
Example
QVR'FOO'
VvV R<FOO
[1] R«10
v
"FOO' [CY 'BACKUP'
OvR'FOO'
V R«<FOO0 X
[1] R«10xX
v

System variables are copied if explicitly included in the left argument, but not if the
left argument is omitted.

Example
OLX

(2 3p'0OLX X')OCY'WS/CRASH'
aLX
~RESTART

A copied object may have the same name as an object being executed. Ifso, the
name is disassociated from the existing object, but the existing object remains
defined in the workspace until its execution is completed.

Example

)SI
#.FO0O[1]x*

QvrR'FoO"
V R«FOO
[1] R«10
v

'FOO'CY'WS/MYWORK'

FOO
123

)SI
#.FO0O[1]x*

~{LcC
10

Chapter 6: System Functions & Variables 415

Digits: R«0D

This is a simple character vector of the digits from 0 to 9.

Example

0o
0123456789

Decimal Comparison Tolerance: docCT

The value of IDCT determines the precision with which two numbers are judged to
be equal when the value of JFR is 1287. IfFR is 645, the system uses (CT.

(DCT may be assigned any value in the range from 0 to
2.3283064365386962890625E710. A value of 0 ensures exact comparison.
The value in a clear workspace is 1E728.

For further information, see "Comparison Tolerance: " on page 412.

Examples

ODCT«1E~10
1.00000000001 1.0000001 = 1
10

416 Dyalog APL/W Programmer's Guide & Language Reference

Display Form: R«[DF Y

0DF sets the Display Form of a namespace, a GUI object, a Class, or an Instance of a
Class.

Y must be a simple character array that specifies the display form of a namespace. If
defined, this array will be retumed by the format functions and [JFMT instead of the
default for the object in question. This also applies to the string that is displayed
when the name is referenced but not assigned (the default display).

The result R is the previous value of the Display Form which initially is ONULL.

'"F'OWC'Form'
3F
#.F
p3F
3
OFMT F
#.F
p0FMT F
1 3
F A default display uses 3
#.F
F.ODF 'Pete''s Form'
3F
Pete's Form
p3F
11
OFMT F
Pete's Form
p0FMT F
1 11

Notice that [IDF will accept any character array, but JFMT always returns a matrix.

F.ODF 2 2 5p0A
F

ABCDE

FGHIJ

KLMNO
PQRST
p3F

Chapter 6: System Functions & Variables 47

pO<OFMT F
ABCDE
FGHIJ

KLMNO
PQRST
55

Note that [IDF defines the Display Form statically, rather than dynamically.
'F'OWC'Form' 'This is the Caption'

F
#.F

F.(ODF Caption)a set display form to current
caption

F
This is the Caption

F.Caption«'New Caption' a changing caption does not
A change the display form
F
This is the Caption

You may use the Constructor function to assign the Display Form to an Instance of a
Class. For example:

:Class MyClass
vV Make arg
tAccess Public
:Implements Constructor
ODF arg
v
tEndClass A MyClass

PD<[JNEW MyClass 'Pete’
PD
Pete

418 Dyalog APL/W Programmer's Guide & Language Reference

It is possible to set the Display Form for the Root and for JSE

JCLEAR
clear ws
#
#
ObF OWSID
#
CLEAR WS
0sE
0se
OSE.ODF 'Session'
0sEe
Session

Note that [JDF applies directly to the object in question and is not automatically
applied in a hierarchical fashion.

IXIDNS (]
X
#.X
'Y'X.ONS "'
X.Y
#.X.Y
X.ODF 'This is X'
X
This is X
X.Y

#.X.Y

Chapter 6: System Functions & Variables 419

Division Method: go1v

The value of DIV determines how division by zero is to be treated. IfJDIV=0,
division by 0 produces a DOMAIN ERROR except that the special case of 0+0
returns 1.

If(DIV=1, division by 0 retumns 0.
ODIV may be assigned the value 0 or 1. The value in a clear workspace is 0.

(D1IV is an implicit argument of the monadic function Reciprocal (+) and the dyadic
function Divide ().
Examples

(poIiv<o

102+201
0.5 12

0 1
DOMAIN ERROR
+0 1

A

ODIV«1

0 2
0 0.5

102 +004
0 0 0.5

Delay: {R}<0DOL Y

Y must be a simple non-negative numeric scalar or one element vector. A pause of
approximately Y seconds is caused.

The shy result R is an integer scalar value indicating the length of the pause in
seconds.

The pause may be interrupted by a strong interrupt.

420 Dyalog APL/W Programmer's Guide & Language Reference

Diagnostic Message: R+[1DM

This niladic function returns the last reported APL error as a three-element vector, giv-
ing error message, line in error and position of caret pointer.

Example

230
DOMAIN ERROR
230

A

(oM
DOMAIN ERROR 230 A

Chapter 6: System Functions & Variables

421

Extended Diagnostic Message:

R<[JDMX

[JDMX is a system object that provides information about the last reported APL error.
(OMX has thread scope, i.e. its value differs according to the thread from which it is
referenced. In a multi-threaded application therefore, each thread has its own value of

(JoMX.

[DMX contains the following Properties (name class 2.6). Note that this list is likely
to change. Your code should not assume that this list will remain unchanged. You
should also not assume that the display form of JDMX will remain unchanged.

character
Th fth
Category vector e category of the error
OM nested | Diagnostic message. This is the same as
vector | [IDM, but thread safe
character | Event message; this is the same as JEM
EM
vector |[EN
. Error number. This is the same as JEN, but
EN integer
thread safe
ENX integer | Sub-error number
URL of a web page that will provide help
character for this error. APL identifies and has a
He lpURL handler for URLSs starting with Attp:,
vector) .
https:, mailto: and www. This list may be
extended in future
Identifies the line of interpreter source
nested code (file name and line number) which
InternallLocation raised the error. This information may be
vector
useful to Dyalog support when
investigating an issue
haract . .
Message CRATACET | & ither information about the error
vector
OSError see If applicable, %dentiﬁes the error generated
below by the Operating System
For system generated errors, Vendor will
character | always contain the character vector
Vendor , . . .
vector Dyalog'. This value can be set using

OSIGNAL

422 Dyalog APL/W Programmer's Guide & Language Reference

OSError is a 3-element vector whose items are as follows:

This indicates how the operating system error was
1 intecer retrieved.
g 0 = by the C-library errno () function
1 = by the Windows GetLastError () function
’ inteer Error code. The error number retumed by the operating
£ system using errno () or GetLastError () as above
3 character |The description of the error returned by the operating
vector system
Example
1+0
DOMAIN ERROR
1+0
A
OJoMx
EM DOMAIN ERROR

Message Divide by zero
HelpURL http://help.dyalog.com/dmx/13.1/General/1

[ODMX.InternallLocation
arith_su.c 554

Isolation of Handled Errors

0DMX cannot be explicitly localised in the header of a function. However, for all

trapped errors, the interpreter creates an environment which effectively makes the cur-

rent instance of JIDMX local to, and available only for the duration of, the trap-han-

dling code.

With the exception of J-TRAP with Cutback, [JDMX is implicitly localised within:

e Any function which explicitly localises OTRAP
e The :Case[List] or :Else clause ofa : Trap control structure.
e The right hand side of a D-function Error-Guard.

Chapter 6: System Functions & Variables 423

and is implicitly un-localised when:

e A function which has explicitly localised OTRAP terminates (even if the
trap definition has been inherited from a function further up the stack).

e The :EndTrap of the current : Trap control structure is reached.

e A D-function Error-Guard exists.

During this time, if an error occurs then the localised JDMX is updated to reflect the
values generated by the error.

The same is true for JTRAP with Cutback, with the exception that if the cutback trap
event is triggered, the updated values for JDMX are preserved until the function that
set the cutback trap terminates.

The benefit of the localisation strategy is that code which uses error trapping as a
standard operating procedure (such as a file utility which traps FILE NAME ERROR
and creates missing files when required) will not pollute the environment with irrel-
evant error information.

Example

V tie<NewFile name
[1] :Trap 22
[2] tie<name [JFCREATE O
[3] :Else
[4] OJDMX
[5] tie<name [OFTIE O
[6] name [JFERASE tie
[7] tie<name [JFCREATE O
[8] :EndTrap
[9] OFUNTIE tie

\'4

[DMX is cleared by)RESET,.

Jreset
pOFMT [DMX
00

The first time we run NewFile 'pete’,the file doesn't exist and the JFCREATE
in NewFile[2] succeeds.

NewFile 'pete'’

424 Dyalog APL/W Programmer's Guide & Language Reference

If we run the function again, the JFCREATE in NewF i Le[2]Jgenerates an error
which triggers the : E L se clause of the :Trap. On entry to the : E L se clause, the
values in [IDMX reflect the error generated by OF CREATE. The file is then tied, erased
and recreated.

EM FILE NAME ERROR

Message File exists

HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/9
1

After exiting the : Trap control structure, the shadowed value of [JDMX is discarded,
revealing the orignal value that it shadowed

pOFMT [IDMX
0o

Example

The ErasefF i le function also uses a : Trap in order to ignore the situation when
the file doesn't exist.

V ErasefFile name;tie

[1] :Trap 22
[2] tieename OFTIE O
[3] name [JFERASE tie
[4] :Else
[5] OoMmx
[6] :EndTrap

\4

The first time we run the function, it succeeds in tieing and then erasing the file.

Erasefile 'pete’

The second time, the OF TIE fails. On entry to the : E L se clause, the values in JDMX
reflect this error.

Erasefile 'pete'’
EM FILE NAME ERROR
Message Unable to open file
OSError 1 2 The system cannot find the file specified.
HelpURL http://help.dyalog.com/dmx/13.1/Componentfilesystem/11

Chapter 6: System Functions & Variables 425

Once again, the local value of IDMX is discarded on exit from the : Trap, revealing
the shadowed value as before.

pOFMT [DMX
00

Example

In this example only the error number (EN) propery of JDMX is displayed in order to
simplify the output:

Vv foo n;[TRAP
[1] 'Start foo'[IDMX.EN
[2] OTRAP«(2 'E' '-»err')(11 'C' '-serr')
[3] goo n
[4] err:'End foo: '[DJDMX.EN
\'4

v goo n;[TRAP
[1] OTRAP«5 'E' 'serr'
[2] ¢n>'+0"' '1 2+1 2 3' 'o!
[3] err:'goo: '[IDMX.EN

\4

In the first case a DOMAIN ERROR (11)is generated on goo[2]. This error is not
included in the definition of JTRAP in goo, but rather the the Cutback JTRAP def-
inition in f 0o. The error causes the stack to be cut back to f oo, and then execution
branches to foo[4]. Thus ODMX. EN in f oo retains the value set when the error
occurred in goo.

foo 1
Start foo O
End foo: 11

In the second case a LENGTH ERROR (5)is raised on goo[2]. This error is included
in the definition of JTRAP in goo so the value [JDMX . EN while in goo is 5, but
when goo terminates and f 0o resumes execution the value of JDMX. EN localised in
goo is lost.

foo 2
Start foo O
goo: 5

End foo: O

426 Dyalog APL/W Programmer's Guide & Language Reference

In the third case a SYNTAX ERROR (2)is raised on goo[2]. Since the JTRAP state-
ment is handled within goo (although the applicable JTRAP is defined in f 00), the
value [IDMX . EN while in goo is 2, but when goo terminates and f oo resumes
execution the value of JDMX . EN localised in goo is lost.

foo 3
Start foo O
goo: 2
End foo: O

Dequeue Events: {R}<[DQ Y

[0DQ awaits and processes events. Y specifies the GUI objects(s) for which events are
to be processed. Objects are identified by their names, as character scalars/vectors, or
by namespace references. These may be objects of type Root, Form, Locator, Filebox,
MsgBox, PropertySheet, TCPSocket, Timer, Clipboard and pop-up Menu. Sub-
objects (children) of those named in Y are also included. However, any objects
which exist, but are not named in Y, are effectively disabled (do not respond to the
user).

IfYis '."',all objects currently owned and subsequently created by the current
thread are included in the [JDQ. Note that because the Root object is owned by thread
0, events on Root are reported only to thread 0.

IfY is empty it specifies the object associated with the current namespace and is only
valid if the current space is one of the objects listed above.

Otherwise, Y contains the name(s) of or reference(s) to the objects for which events
are to be processed. Effectively, this is the list of objects with which the user may
interact. A DOMAIN ERROR isreported if an element of Y refers to anything other
than an existing "top-level" object.

Associated with every object is a set of events. For every event there is defined an
"action" which specifies how that event is to be processed by 0DQ. The "action" may
be a number with the value 0, 1 or ™1, or a character vector containing the name of a
"callback function", or a character vector containing the name of a callback function
coupled with an arbitrary array. Actions can be defined in a number of ways, but the
following examples will illustrate the different cases.

Chapter 6: System Functions & Variables 427

OBJ (WS 'Event' 'Select' O

OBJ OWS 'Event' 'Select' 1

OBJ [OWS 'Event' 'Select' 'FOO'
OBJ [OWS 'Event' 'Select' 'FOO' 10

OBJ [OWS 'Event' 'Select' 'FOO&'

These are treated as follows:

Action = 0 (the default)

0DQ performs "standard" processing appropriate to the object and type of event. For
example, the standard processing for a KeyPress event in an Edit object is to action
the key press, i.e. to echo the character on the screen.

Action="1

This disables the event. The "standard" processing appropriate to the object and type
of'event is not performed, or in some cases is reversed. For example, if the "action
code" for a KeyPress event (22) is set to ~1, [0DQ simply ignores all keystrokes for
the object in question.

Action=1

0DQ terminates and returns information pertaining to the event (the event message in
R as a nested vector whose first two elements are the name of the object (that gen-
erated the event) and the event code. R may contain additional elements depending
upon the type of event that occurred.

Action = fn {larg}

fn is a character vector containing the name of a callback function. This function is
automatically invoked by 0DQ whenever the event occurs, and prior to the standard
processing for the event. The callback is supplied the event message (see above) as
its right argument, and, if specified, the array L arg as its left argument. Ifthe call-
back function fails to return a result, or returns the scalar value 1, [0DQ then performs
the standard processing appropriate to the object and type of event. Ifthe callback
function returns a scalar 0, the standard processing is not performed or in some cases
is reversed.

If the callback function returns its event message with some of the parameters
changed, these changes are incorporated into the standard processing. An example
would be the processing of a keystroke message where the callback function sub-
stitutes upper case for lower case characters. The exact nature of this processing is
described in the reference section on each event type.

428 Dyalog APL/W Programmer's Guide & Language Reference

Action = gexpr

If Action isset to a character vector whose first element is the execute symbol (¢)
the remaining string will be executed automatically whenever the event occurs. The
default processing for the event is performed first and may not be changed or inhib-
ited in any way.

Action = fn& {larg}

fn is a character vector containing the name of a callback function. The function is
executed in a new thread. The default processing for the event is performed first and
may not be changed or inhibited in any way.

The Result of JDQ

[IDQ terminates, returning the shy result R, in one of four instances.

Firstly, 0DQ terminates when an event occurs whose "action code" is 1. In this case,
its result is a nested vector containing the event message associated with the event.
The structure of an event message varies according to the event type (see Object Ref-
erence). However, an event message has at least two elements of which the first is a
refto the object or a character vector containing the name of the object, and the sec-
ond is a numeric code specifying the event type.

[DQ also terminates if all of the objects named in Y have been deleted. In this case,
the result is an empty character vector. Objects are deleted either using JEX, or on
exit from a defined function or operator if the names are localised in the header, or on
closing a form using the system menu.

Thirdly, JDQ terminates if the object named in its right argument is a special modal
object, such asaMsgBox, FileBox orLocator, and the user has finished inter-
acting with the object (e.g. by pressing an "OK" button). The return value of (JDQ in
this case depends on the action code of the event.

Finally, [IDQ terminates with a VALUE ERROR ifit attempts to execute a callback
function that is undefined.

Chapter 6: System Functions & Variables 429

Data Representation (Monadic): R«[DR Y

Monadic [DR returns the type of its argument Y. The result R is an integer scalar con-
taining one of the following values. Note that the internal representation and data
types for character data differ between the Unicode and Classic Editions.

Table 12: Unicode Edition

Value Data Type

11 1 bit Boolean

80 8 bits character

83 8 bits signed integer
160 16 bits character

163 16 bits signed integer
320 32 bits character

323 32 bits signed integer
326 Pointer (32-bit or 64-bit as appropriate)
645 64 bits Floating

1287 128 bits Decimal

Table 13: Classic Edition

Value Data Type

11 1 bit Boolean

82 8 bits character

83 8 bits signed integer

163 16 bits signed integer

323 32 bits signed integer

326 Pointer (32-bit or 64-bit as appropriate)
645 64 bits Floating

1287 128 bits Decimal

Note that types 80,160 and 320 and 83 and 163 and 1287 are exclusive to Dyalog
APL.

430

Dyalog APL/W Programmer's Guide & Language Reference

Data Representation (Dyadic): R«X ODR Y

Dyadic [IDR converts the data type of its argument Y according to the type spec-
ification X. See "Data Representation (Monadic):" above for a list of data types but
note that 1287 is not a permitted value in X.

Case 1:

X is a single integer value. The bits in the right argument are interpreted as elements
of'an array of type X. The shape of the resulting new array will typically be changed
along the last axis. For example, a character array seen as Boolean will have 8 times
as many elements along the last axis.

Case 2:

X is a 2-element integer value. The bits in the right argument are interpreted as type X
[1]. The system then attempts to convert the elements of the resulting array to type

X[2] without loss of precision. The result R is a two element nested array comprised
of:

1. The converted elements or a fill element (0 or blank) where the conversion
failed

2. A Boolean array of the same shape indicating which elements were suc-
cessfully converted.

Case 3: Classic Edition Only

X is a 3-element integer value and X[2 3] is 163 82. The bits in the right argu-
ment are interpreted as elements of an array of type X[1]. The system then converts
them to the character representation of the corresponding 16 bit integers. This case is
provided primarily for compatibility with APL*PLUS. For new applications, the use
of the [conv] field with ONAPPEND and ONREPLACE is recommended.

Conversion to and from character (data type 82) uses the translate vector given by
ONXLATE 0. By default this is the mapping defined by the current output translate
table (usually WIN.DOT).

Note. The internal representation of data may be modified during workspace com-
paction. For example, numeric arrays and (in the Unicode Edition) character arrays
will, if possible, be squeezed to occupy the least possible amount of memory. How-
ever, the internal representation of the result R is guaranteed to remain unmodified
until it is re-assigned (or partially re-assigned) with the result of any function.

Chapter 6: System Functions & Variables 431

Edit Object: {R}«{X}0ED Y

0ED invokes the Editor. Y is a simple character vector, a simple character matrix, or a
vector of character vectors, containing the name(s) of objects to be edited. The
optional left argument X is a character scalar or character vector with as many ele-
ments as there are names in Y. Each element of X specifies the type of the cor-
responding (new) object named in Y, where:

v function/operator
> simple character vector
€ vector of character vectors

- character matrix

® Namespace script
o Class script
° Interface

Ifan object named in Y already exists, the corresponding type specification in X is
ignored.

IfOED is called from the Session, it opens Edit windows for the object(s) named in Y
and returns a null result. The cursor is positioned in the first of the Edit windows
opened by [JED, but may be moved to the Session or to any other window which is
currently open. The effect is almost identical to using) ED.

IfJED is called from a defined function or operator, its behaviour is different. On
asynchronous terminals, the Edit windows are automatically displayed in "full-
screen" mode (ZOOMED). In all implementations, the user is restricted to those win-
dows named in Y. The user may not skip to the Session even though the Session may
be visible

0ED terminates and returns a result ONLY when the user explicitly closes all the win-
dows for the named objects. In this case the result contains the names of any objects
which have been changed, and has the same structure as Y.

Event Message: R«dEM Y

Y must be a simple non-negative integer scalar or vector of event codes. IfY is a sca-
lar, R is a simple character vector containing the associated event message. IfY isa
vector, R is a vector of character vectors containing the corresponding event mes-
sages.

432 Dyalog APL/W Programmer's Guide & Language Reference

If'Y refers to an undefined error code "n", the event message returned is "ERROR
NUMBER n".

Example

0eM 11
DOMAIN ERROR

Exception: R«JEXCEPTION

This is a system object that identifies the most recent Exception thrown by a Micro-
soft .Net object.

OEXCEPTION derives from the Microsoft .Net class System.Exception. Among its
properties are the following, all of which are strings:

The name of the .Net namespace in which the exception was

Source
generated

StackTrace [The calling stack

Message The error message

OUSING<«'System'

DT«DateTime.New 100000 0 O
EXCEPTION

DT«DateTime.New 100000 0 O

OEN
90
OEXCEPTION.Message
Specified argument was out of the range of valid values.

Parameter name: Year, Month, and Day parameters describe
an unrepresentable DateTime.

OJEXCEPTION.Source
mscorlib

JEXCEPTION.StackTrace
at System.DateTime.DateToTicks(Int32 year,
Int32 month, Int32 day)

at System.DateTime..ctor(Int32 year,
Int32 month, Int32 day)

Chapter 6: System Functions & Variables 433

Expunge Object: {R}<EX Y

Y must be a simple character scalar, vector or matrix, or a vector of character vectors
containing a list of names. R is a simple Boolean vector with one element per name
inY.

Each name in Y is disassociated from its value if the active referent for the name is a
defined function, operator, variable or namespace.

The value of an element of R is 1 if the corresponding name in Y is now available for
use. This does not necessarily mean that the existing value was erased for that
name. A value of 0 is returned for an ill-formed name or for a distinguished name in
Y. The result is suppressed if not used or assigned.

Examples

OEX'VAR'

+JEX'FOO' '00I0' 'X' '123'
1010

If a named object is being executed the existing value will continue to be used until
its execution is completed. However, the name becomes available immediately for
other use.

Examples
)SI
#.FOO[1]x
OVR'FOO'
V R<FOO
[1] R«10
\'4
+JEX'FOO'
1
)SI
#.FOO[1]x
vFoo[[]
defn error
FOO«1 2 3
~[LC
10
FOO

123

434 Dyalog APL/W Programmer's Guide & Language Reference

If a named object is an external variable, the external array is disassociated from the
name:

OXT'F'
FILES/COSTS

OQeX'F' o OXT'F'
If the named object is a GUI object, the object and all its children are deleted and
removed from the screen. The expression JEX ' . ' deletes all objects owned by the
current thread except for the Root object itself. In addition, if this expression is

executed by thread 0, it resets all the properties of ' . ' to their default values. Fur-
thermore, any unprocessed events in the event queue are discarded.

Ifthe named object is a shared variable, the variable is retracted.

If the named object is the last remaining external function of an auxiliary process, the
AP is terminated.

Ifthe named object is the last reference into a dynamic link library, the DLL is freed.

Chapter 6: System Functions & Variables 435

Export Object: {R}«{X}OEXPORT Y

OEXPORT is used to set or query the export type of a defined function (or operator)
referenced by the JPATH mechanism.

Y is a character matrix or vector-of-vectors representing the names of functions and
operators whose export type is to be set or queried.

X is an integer scalar or vector (one per name in the namelist) indicating the export
type. X can currently be one of the values:

e 0 - not exported.
e 1 -exported (default).

A scalar or 1-element-vector type is replicated to conform with a multi-name list.

The result R is a vector that reports the export type of the functions and operators
named in Y. When used dyadically to set export type, the result is shy.

When the path mechanism locates a referenced function (or operator) in the list of
namespaces in the JPATH system variable, it examines the function’s export type:

This instance of the function is ignored and the search is resumed at the
next namespace in the QPATH list. Type-0 is typically used for functions
residing in a utility namespace which are not themselves utilities, for
example the private sub-function of a utility function.

This instance of the function is executed in the namespace in which is was
1 | found and the search terminated. The effect is exactly as if the function
had been referenced by its full path name.

Warning: The left domain of JEXPORT may be extended in future to include extra
types 2, 3,... (for example, to change the behaviour of the function). This means that,
while JEXPORT returns a Boolean result in the first version, this may not be the case
in the future. If you need a Boolean result, use 0# or an equivalent.

(0#0EXPORT [Onl 3 4)#0nl 3 4+ A list of exported
A functions and ops.

436 Dyalog APL/W Programmer's Guide & Language Reference

File Append Component: {R}<«X OFAPPEND Y

Access code 8

Y must be a simple integer scalar ora 1 or 2 element vector containing the file tie
number followed by an optional passnumber. Ifthe passnumber is omitted it is
assumed to be zero. Subject to a few restrictions, X may be any array.

The shy result R is the number of the component to which X is written, and is 1
greater than the previously highest component number in the file, or 1 if the file is
new.

Examples
(100071000) [FAPPEND 1

O«(2 3p16) 'Geoff' (OOR'FOO') [OFAPPEND 1
12

0«A B C OFAPPEND1
13 14 15

Dump+<{
tie<«a [OFCREATE O A create file.
(OFUNTIE tie){}w OFAPPEND tie m append and untie.

File System Available: R«[JFAVAIL

This niladic function returns the scalar value 1 unless the component file system is
unavailable for some reason, in which case it returns scalar 0. IfJFAVAIL does
return 0, most of the component file system functions will generate the error message:

FILE SYSTEM NOT AVAILABLE
See User Guide for further details.

Chapter 6: System Functions & Variables 437

File Check and Repair: R«{X} OFCHK Y

0F CHK validates and repairs component files, and validates files associated with
external variables, following an abnormal termination of the APL process or oper-
ating system.

Y must be a simple character scalar or vector which specifies the name of the file to
be exclusively checked or repaired. For component files, the file must be named in
accordance with the operating system's conventions, and may be a relative or abso-
lute pathname. The file must exist and must not be tied. For files associated with
external variables, any filename extension must be specified even if JXT would not
require it. See User Guide for file naming conventions under Windows and UNIX.
The file must exist and must not be associated with an external variable.

The optional left-argument X must be a vector of zero or more character vectors from
among 'force', 'repair' and 'rebuild’,which determine the detailed oper-
ation of the function. Note that these options are case-sensitive.

e If X contains 'force' [FCHK will validate the file even if it appears to
have been cleanly untied.

e If X contains 'repair' [FCHK will repair the file, following validation,
if it appears to be damaged. This option may be used in conjunction with
‘force'.

e If X contains 'rebuild' [FCHK will repair the file unconditionally.

If X is omitted, the default behaviour is as follows:

1. If the file appears to have been cleanly untied previously, return 8, i.e.
report that the file is OK.

2. Otherwise, validate the file and return the appropriate result. If the file is cor-
rupt, no attempt is made to repair it.

The result R is a vector of the numbers of missing or damaged components. R may
include non-positive numbers of "pseudo components" that indicate damage to parts
ofthe file other than in specific components:

0 ACCESS MATRIX.
1 Free-block tree.
-2 Component index tree.

Other negative numbers represent damage to the file metadata; this set may be
extended in the future.

438 Dyalog APL/W Programmer's Guide & Language Reference

Following a check of the file, a non-null result indicates that the file is damaged.

Following a repair of the file, the result indicates those components that could not
be recovered. Un-recovered components will givea FILE COMPONENT DAMAGED
error if read but may be replaced without error.

Repair can recover only check-summed components from the file, i.e. only those com-
ponents that were written with the checksum option enabled (see "File Properties: "
on page 458).

Following an operating system crash, repair may result in one or more individual
components being rolled back to a previous version or not recovered at all, unless
Journaling levels 2 or 3 were also set when these components were written.

File Copy: R«X OFCOPY Y

Access Code: 4609

Y must be a simple integer scalar or 1 or 2-element vector containing the file tie
number and optional passnumber. The file need not be tied exclusively.

X is a character vector containing the name of a new file to be copied to.

[F COPY creates a copy of the tied file specified by Y, named X. The new file X will
be a 64-bit file, but will otherwise be identical to the original file. In particular all
component level information, including the user number and update time, will be the
same. The operating system file creation, modification and access times will be set to
the time at which the copy occurred.

The result R is the file tie number associated with the new file X.

Note that the Access Code is 4609, which is the sum of the Access Codes for
[OFREAD (1),0FRDCI (512) and JFRDAC (4096).

Example

told<'oldfile32'0FTIE O
'S' OFPROPS told
32
tnew<'newfileéb4' [FCOPY told

'S' OFPROPS tnew
64

If X specifies the name of an existing file, the operation fails witha FILE NAME
ERROR.

Chapter 6: System Functions & Variables 439

Note: This operation is atomic. If an error occurs during the copy operation (such as
disk full) orifa strong interrupt is issued, the copy will be aborted and the new file X
will not be created.

440 Dyalog APL/W Programmer's Guide & Language Reference

File Create: {R}«X [OFCREATE Y

Y must be a simple integer scalar ora 1 or 2 element vector containing the file tie
number followed by an optional address size. .

The file tie number must not be the tie number associated with another tied file.

The address size is an integer and may be either 32 or 64. A value of 32 causes the
internal component addresses to be represented by 32-bit values which allow a max-
imum file size of 4GB. A value of 64 (the default) causes the internal component
addresses to be represented by 64-bit values which allows file sizes up to operating
system limits. Note that 32-bit component files will. See below.

Note:

e a 32-bit component file may not contain Unicode character data.
e a 64-bit component file may not be accessed by versions of Dyalog APL
prior to Version 10.1.0

X must be either

a. a